Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology

. 2022 ; 17 () : 2505-2533. [epub] 20220602

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35677678

In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.

Zobrazit více v PubMed

Lowry GV, Avellan A, Gilbertson LM. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanotechnol. 2019;14(6):517–522. doi:10.1038/s41565-019-0461-7 PubMed DOI

Mittapally S, Aziz A, Student A, Afnan AA. A review on nanotechnology in cosmetics. Pharma Innov Int J. 2019;8(4):668–671.

Effiong DE, Uwah TO, Jumbo EU, et al. Nanotechnology in cosmetics: basics, current trends and safety concerns—A review. Adv Nanopart. 2019;9(1):1–22. doi:10.4236/ANP.2020.91001 DOI

Erkoc P, Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies. Prosthes. 2021;3(1):25–52. doi:10.3390/PROSTHESIS3010005 DOI

Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018;67(6):537–543. doi:10.1111/LAM.13082 PubMed DOI

Marinescu L, Ficai D, Oprea O, et al. Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater. 2020;2020:6651207. doi:10.1155/2020/6651207 DOI

Fouda A, El-din Hassan S, Salem SS, Shaheen TI. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb Pathog. 2018;125:252–261. doi:10.1016/J.MICPATH.2018.09.030 PubMed DOI

Fouda A, Hassan SED, Saied E, Azab MS. An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (K-w). J Environ Chem Eng. 2021;9(1):104693. doi:10.1016/J.JECE.2020.104693 DOI

Badawy AA, Abdelfattah NAH, Salem SS, Awad MF, Fouda A. Efficacy assessment of biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology. 2021;10(3):233. doi:10.3390/BIOLOGY10030233 PubMed DOI PMC

Syed A, Ahmad A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2012;97:27–31. doi:10.1016/J.COLSURFB.2012.03.026 PubMed DOI

Canu IG, Schulte PA, Riediker M, Fatkhutdinova L, Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J Epidemiol Community Heal. 2018;72(2):148–153. doi:10.1136/JECH-2016-208668 PubMed DOI PMC

Alavi M, Adulrahman NA, Haleem AA, et al. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria. Cell Mol Biol. 2021;67(5):151–156. doi:10.14715/CMB/2021.67.5.21 PubMed DOI

Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z. Green Nanotechnology. Interface Sci Technol. 2019;28:145–198. doi:10.1016/B978-0-12-813586-0.00005-5 DOI

Oke AE, Aigbavboa CO, Semenya K. Energy savings and sustainable construction: examining the advantages of nanotechnology. Energy Procedia. 2017;142:3839–3843. doi:10.1016/J.EGYPRO.2017.12.285 DOI

Müller RH, Pyo SM. Why nanotechnology in dermal products?—Advantages, challenges, and market aspects. In: Cornier J, Keck CM, Voorde Van de M, editors. Nanocosmetics. 1st ed. Cham: Springer; 2019:347–359. doi:10.1007/978-3-030-16573-4_16 DOI

Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303–4314. doi:10.2147/IJN.S50070 PubMed DOI PMC

Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules. 2015;20(9):16540–16565. doi:10.3390/MOLECULES200916540 PubMed DOI PMC

Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol. 2017;15(1):31–39. doi:10.1016/J.JGEB.2017.04.005 PubMed DOI PMC

Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon. 2021;7(3):e06456. doi:10.1016/J.HELIYON.2021.E06456 PubMed DOI PMC

Salvioni L, Morelli L, Ochoa E, et al. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. doi:10.1016/J.CIS.2021.102437 PubMed DOI

Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010;6(4):570–574. doi:10.1016/J.NANO.2009.12.002 PubMed DOI

Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M. Nanoparticles: small and mighty. Int J Dermatol. 2011;50(3):247–254. doi:10.1111/J.1365-4632.2010.04815.X PubMed DOI

Li Q, Liu F, Li M, Chen C, Gadd GM. Nanoparticle and nanomineral production by fungi. Fungal Biol Rev. 2021. doi:10.1016/J.FBR.2021.07.003 DOI

Alavi M, Rai M. Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. Cell Mol Biomed Rep. 2021;1(2):52–59. doi:10.55705/CMBR.2021.142436.1014 DOI

Chinchilla-Rodríguez Z, Miguel S, Perianes-Rodríguez A, Sugimoto CR. Dependencies and autonomy in research performance: examining nanoscience and nanotechnology in emerging countries. Science. 2018;115(3):1485–1504. doi:10.1007/S11192-018-2652-7 DOI

Mitter N, Hussey K. Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotechnol. 2019;14(6):508–510. doi:10.1038/s41565-019-0464-4 PubMed DOI

Henchion M, McCarthy M, Dillon EJ, Greehy G, McCarthy SN. Big issues for a small technology: consumer trade-offs in acceptance of nanotechnology in food. Innov Food Sci Emerg Technol. 2019;58:102210. doi:10.1016/J.IFSET.2019.102210 DOI

Jain R, Sharma D. Applications and Ethical Issues of Nanotechnology in Real World. J Web Eng Technol. 2019;6(2):25–28.

Silva GA. A New Frontier: the convergence of nanotechnology, brain machine interfaces, and artificial intelligence. Front Neurosci. 2018;12:843. doi:10.3389/FNINS.2018.00843 PubMed DOI PMC

Rana KL, Kour D, Yadav N, Yadav AN. Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. In: Microb Endophytes Prospect Sustain Agric; 2020:231–262. doi:10.1016/B978-0-12-818734-0.00010-3 DOI

Kargozar S, Mozafari M. Nanotechnology and Nanomedicine: start small, think big. Mater Today Proc. 2018;5(7):15492–15500. doi:10.1016/J.MATPR.2018.04.155 DOI

Deshmukh R, Khardenavis AA, Purohit HJ. Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol. 2016;56(3):247. doi:10.1007/S12088-016-0584-6 PubMed DOI PMC

Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011;90(5):1609–1624. doi:10.1007/S00253-011-3249-8 PubMed DOI

Hietzschold S, Walter A, Davis C, Taylor AA, Sepunaru L. Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain Chem Eng. 2019;7(9):8070–8076. doi:10.1021/ACSSUSCHEMENG.9B00506 DOI

Ahmad Siddiqui E, Ahmad A, Julius A, et al. Biosynthesis of anti-proliferative gold nanoparticles using endophytic Fusarium oxysporum strain isolated from neem (A. indica) leaves. Curr Top Med Chem. 2016;16(18):2036–2042. doi:10.2174/1568026616666160215160644 PubMed DOI

Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 2002;3(5):461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X PubMed DOI

Silva LP, Bonatto CC, Polez VLP. Green Synthesis of Metal Nanoparticles by Fungi: Current Trends and Challenges. 2016:71–89. doi:10.1007/978-3-319-42990-8_4 DOI

Khandel P, Shahi SK. Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem. 2018;8(4):369–391. doi:10.1007/s40097-018-0285-2 DOI

Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8(6):904. doi:10.1111/1751-7915.12151 PubMed DOI PMC

Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944–12967. doi:10.1039/C8RA10483B PubMed DOI PMC

Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):9. doi:10.3390/IJMS17091534 PubMed DOI PMC

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931. doi:10.1016/J.ARABJC.2017.05.011 DOI

Illath K, Wankhar S, Mohan L, Nagai M, Santra TS. Metallic nanoparticles for biomedical applications. Springer Ser Biomater Sci Eng. 2021;16:29–81. doi:10.1007/978-981-33-6252-9_2 DOI

Heuer-Jungemann A, Feliu N, Bakaimi I, et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev. 2019;119(8):4819–4880. doi:10.1021/ACS.CHEMREV.8B00733 PubMed DOI

Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng. 2015;2015:1–9. doi:10.1155/2015/682749 DOI

Ojuederie O, Babalola O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017;14(12):1504. doi:10.3390/ijerph14121504 PubMed DOI PMC

Azam Z, Ayaz A, Younas M, et al. Microbial synthesized cadmium oxide nanoparticles induce oxidative stress and protein leakage in bacterial cells. Microb Pathog. 2020:144. doi:10.1016/J.MICPATH.2020.104188 PubMed DOI

Salunke BK, Sawant SS, Lee SI, Kim BS. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol. 2016;32(5). doi:10.1007/S11274-016-2044-1 PubMed DOI

Yurtluk T, Akçay FA, Avcı A. Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8. Prep Biochem Biotechnol. 2018;48(2):151–159. doi:10.1080/10826068.2017.1421963 PubMed DOI

Abdo AM, Fouda A, Eid AM, et al. Green synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito, Culex pipiens. Materials. 2021;14(22):6983. doi:10.3390/MA14226983 PubMed DOI PMC

Singh A, Gautam PK, Verma A, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol Rep. 2020;25:e00427. doi:10.1016/J.BTRE.2020.E00427 PubMed DOI PMC

Guilger-Casagrande M, Lima de R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. doi:10.3389/FBIOE.2019.00287/BIBTEX PubMed DOI PMC

Guilger-Casagrande M, Lima de R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. doi:10.3389/fbioe.2019.00287 PubMed DOI PMC

Menon S, Rajeshkumar S, Venkatkumar S. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Technol. 2017;3(4):516–527. doi:10.1016/J.REFFIT.2017.08.002 DOI

Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1–16. doi:10.1155/2011/270974 PubMed DOI

Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett. 2019;41(8–9):899–914. doi:10.1007/S10529-019-02699-X/FIGURES/12 PubMed DOI

Mohmed AA, Fouda A, Elgamal MS, EL-Din Hassan S, Shaheen TI, Salem SS. Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium Keratoplasticum A1-3. Egypt J Chem. 2017;60:63–71. doi:10.21608/EJCHEM.2017.1626.1137 DOI

Fouda A, Hassan SED, Abdel-Rahman MA, et al. Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr Res Biotechnol. 2021;3:29–41. doi:10.1016/J.CRBIOT.2021.01.004 DOI

Fouda A, Awad MA, Eid AM, et al. An Eco-friendly approach to the control of pathogenic microbes and anopheles stephensi malarial vector using Magnesium Oxide Nanoparticles (Mg-NPs) fabricated by Penicillium chrysogenum. Int J Mol Sci. 2021;22(10):5096. doi:10.3390/IJMS22105096 PubMed DOI PMC

Das RK, Pachapur VL, Lonappan L, et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng. 2017;2(1):1–21. doi:10.1007/S41204-017-0029-4 DOI

Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: synthesis and biomedical applications. Front Chem. 2021;194. doi:10.3389/FCHEM.2021.626834 PubMed DOI PMC

Balakumaran MD, Ramachandran R, Kalaichelvan PT. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res. 2015;178:9–17. doi:10.1016/J.MICRES.2015.05.009 PubMed DOI

Chan YS, Don MM. Optimization of process variables for the synthesis of silver nanoparticles by Pycnoporus sanguineus using statistical experimental design. J Korean Soc Appl Biol Chem. 2013;56(1):11–20. doi:10.1007/S13765-012-2177-3 DOI

Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett. 2016;11(1):1–15. doi:10.1186/S11671-016-1311-2 PubMed DOI PMC

Owaid MN, Ibraheem IJ. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed. 2017;9(1):5–23. doi:10.1515/ejnm-2016-0016 DOI

Anthony KJP, Murugan M, Jeyaraj M, Rathinam NK, Sangiliyandi G. Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E. coli and B. subtilis. J Ind Eng Chem. 2014;20(4):2325–2331. doi:10.1016/J.JIEC.2013.10.008 DOI

Al-Bahrani R, Raman J, Lakshmanan H, Hassan AA, Sabaratnam V. Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett. 2017;186:21–25. doi:10.1016/j.matlet.2016.09.069 DOI

Sen IK, Maity K, Islam SS. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym. 2013;91(2):518–528. doi:10.1016/J.CARBPOL.2012.08.058 PubMed DOI

Narayanan KB, Park HH, Han SS. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere. 2015;141:169–175. doi:10.1016/J.CHEMOSPHERE.2015.06.101 PubMed DOI

Wang L, Liu CC, Wang YY, Xu H, Su H, Cheng X. Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Curr Appl Phys. 2016;16(9):969–973. doi:10.1016/J.CAP.2016.05.025 DOI

Nguyen VP, Le Trung H, Nguyen TH, Hoang D, Tran TH. Synthesis of biogenic silver nanoparticles with eco-friendly processes using Ganoderma lucidum Extract and evaluation of their theranostic applications. J Nanomater. 2021;2021:1–11. doi:10.1155/2021/6135920 DOI

Owaid MN, Naeem GA, Muslim RF, Oleiwi RS. Synthesis, characterization and antitumor efficacy of silver nanoparticle from Agaricus bisporus Pileus, Basidiomycota. Walailak J Sci Technol. 2018;17(2):75–87. doi:10.48048/wjst.2020.5840 DOI

Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng. 2011;35(4):637–643. doi:10.1007/S00449-011-0646-4 PubMed DOI

Saravanan M, Nanda A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces. 2010;77(2):214–218. doi:10.1016/J.COLSURFB.2010.01.026 PubMed DOI

Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine. 2009;5(1):33–40. doi:10.2217/NNM.09.77 PubMed DOI

Abu-Tahon MA, Ghareib M, Abdallah WE. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochem. 2020;95:1–11. doi:10.1016/J.PROCBIO.2020.04.015 DOI

Ninganagouda S, Rathod V, Singh D; RATHOD Professor V. Extracellular biosynthesis of silver nanoparticles using Aspergillus Flavus and their antimicrobial activity against gram negative MDR strains. Int J Pharm Bio Sci. 2013;4(2):222–229.

Gupta S, Bector S. Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Antonie van Leeuwenhoek. 2013;103(5):1113–1123. doi:10.1007/S10482-013-9892-6 PubMed DOI

Shahzad A, Saeed H, Iqtedar M, et al. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater. 2019;2019:1–14. doi:10.1155/2019/5168698 DOI

Magdi HM, Mourad MHE, El-Aziz MMA. Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt J Exp Biol. 2014;10(1):1–12.

Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater. 2010;177(1–3):539–545. doi:10.1016/J.JHAZMAT.2009.12.066 PubMed DOI

Binupriya AR, Sathishkumar M, Yun S-I. Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res. 2009;49(2):852–858. doi:10.1021/IE9014183 DOI

Vala AK. Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy. 2015;34(1):194–197. doi:10.1002/EP.11949 DOI

Ammar HAM, El-Desouky TA. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol. 2016;121(1):89–100. doi:10.1111/JAM.13140 PubMed DOI

Priyadarshini E, Pradhan N, Sukla LB, Panda PK. Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against gram negative pathogenic bacteria. J Nanotechnol. 2014;2014:1–9. doi:10.1155/2014/653198 DOI

Nirwaan R, Sharma D, Chaturvedi M, Yadav JP. Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. Artic J Nanomed Nanotechnol. 2017. doi:10.4172/2157-7439.1000457 DOI

Laksee S, Puthong S, Teerawatananond T, Palaga T, Muangsin N. Highly efficient and facile fabrication of monodispersed Au nanoparticles using pullulan and their application as anticancer drug carriers. Carbohydr Polym. 2017;173:178–191. doi:10.1016/J.CARBPOL.2017.05.101 PubMed DOI

Rahi DK, Manhas L, Kaur M, Malik D, Rahi S. Extracellular synthesis of silver nanoparticles by an indigenous yeast aureobasidium pullulans RYLF 10: characterization and evaluation of antibacterial potential. Int J Pharm Biol Sci. 2018;8(3):312–321.

Castro ME, Cottet L, Castillo A. Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett. 2014;115:42–44. doi:10.1016/J.MATLET.2013.10.020 DOI

Soni N, Prakash S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res. 2011;110(1):175–184. doi:10.1007/S00436-011-2467-4 PubMed DOI

Manjunath Hulikere M, Joshi CG. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem. 2019;82:199–204. doi:10.1016/J.PROCBIO.2019.04.011 DOI

Manjunath Hulikere M, Joshi CG, Danagoudar A, Poyya J, Kudva AK, Dhananjaya D. Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem. 2017;63:137–144. doi:10.1016/J.PROCBIO.2017.09.008 DOI

Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res. 2011;109(3):823–831. doi:10.1007/S00436-011-2328-1 PubMed DOI

Kaplan Ö, Gökşen Tosun N, Özgür A, et al. Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: characterization, anticancer, antimicrobial and wound healing activities. J Drug Deliv Sci Technol. 2021;64:102641. doi:10.1016/J.JDDST.2021.102641 DOI

Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed Nanotechnol, Biol Med. 2013;9(1):105–110. doi:10.1016/J.NANO.2012.04.007 PubMed DOI

Zhang L, Wei Y, Wang H, et al. Green synthesis of silver nanoparticles using mushroom flammulina velutipes extract and their antibacterial activity against aquatic pathogens. Food Bioprocess Technol. 2020;13(11):1908–1917. doi:10.1007/S11947-020-02533-7 DOI

Birla SS, Gaikwad SC, Gade AK, Rai MK. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J. 2013;2013:1–12. doi:10.1155/2013/796018 PubMed DOI PMC

Korbekandi H, Ashari Z, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res IJPR. 2013;12(3):289. PubMed PMC

Naimi-Shamel N, Pourali P, Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J Mycol Med. 2019;29(1):7–13. doi:10.1016/J.MYCMED.2019.01.005 PubMed DOI

Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater. 2008;9(3). doi:10.1088/1468-6996/9/3/035012 PubMed DOI PMC

Clarance P, Luvankar B, Sales J, et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci. 2020;27(2):706–712. doi:10.1016/J.SJBS.2019.12.026 PubMed DOI PMC

Sogra Fathima B, Balakrishnan RM. Biosynthesis and optimization of silver nanoparticles by endophytic fungus Fusarium solani. Mater Lett. 2014;132:428–431. doi:10.1016/J.MATLET.2014.06.143 DOI

Gopinath K, Arumugam A. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Appl Nanosci. 2013;4(6):657–662. doi:10.1007/S13204-013-0247-4 DOI

Mishra AN, Bhadauria S, Gaur MS, Pasricha R. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM. 2010;62(11):45–48. doi:10.1007/S11837-010-0168-6 DOI

Varshney R, Mishra AN, Bhadauria S, Gaur MS, Novel Microbial A. Route to synthesize silver nanoparticles using Fungus Hormoconis Resinae. Dig J Nanomater Biostruct. 2009;4(2):349–355.

Aziz N, Pandey R, Barman I, Prasad R. Leveraging the attributes of mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol. 2016;7:1984. doi:10.3389/FMICB.2016.01984 PubMed DOI PMC

Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces. 2011;83(1):42–48. doi:10.1016/J.COLSURFB.2010.10.035 PubMed DOI

Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E. SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora Crassa extract. PLoS One. 2013;8(10):e77486. doi:10.1371/JOURNAL.PONE.0077486 PubMed DOI PMC

Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol. 2013;30(2):693–704. doi:10.1007/S11274-013-1417-Y PubMed DOI

Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71(1):133–137. doi:10.1016/J.COLSURFB.2009.01.016 PubMed DOI

Mishra A, Tripathy SK, Wahab R, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol. 2011;92(3):617–630. doi:10.1007/S00253-011-3556-0 PubMed DOI

Hitesh R. Biosynthesis of silver nanoparticles using fungus Penicillium brevicompactum and evaluation of their anti-bacterial activity against some human pathogens. Res J Biotechnol. 2016;11(8):44.

Majeed S, Abdullah Bin MS, Nanda A, Ansari MT. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J Taibah Univ Sci. 2018;10(4):614–620. doi:10.1016/J.JTUSCI.2016.02.010 DOI

Magdi HM, Bhushan B. Extracellular biosynthesis and characterization of gold nanoparticles using the fungus Penicillium chrysogenum. Microsyst Technol. 2015;21(10):2279–2285. doi:10.1007/S00542-015-2666-5 DOI

Deniz F, Mazmanci MA. The biosynthesis of silver nanoparticles with fungal cytoplasmic fluid obtained from Phanerochaete chrysosporium ME446. Environ Res Technol. 2020;3(4):187–192. doi:10.35208/ERT.788891 DOI

Birla SSS, Tiwari VVV, Gade AKK, Ingle APP, Yadav APP, Rai MKK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48(2):173–179. doi:10.1111/J.1472-765X.2008.02510.X PubMed DOI

Gade A, Rai M, Kulkarni S. Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol. 2011;3(3):153–159. doi:10.1080/19430892.2011.628573 DOI

Sarkar J, Kalyan Roy S, Laskar A, Chattopadhyay D, Acharya K. Bioreduction of chloroaurate ions to gold nanoparticles by culture filtrate of Pleurotus sapidus Quél. Mater Lett. 2013;92:313–316. doi:10.1016/J.MATLET.2012.10.130 DOI

Chaturvedi VK, Yadav N, Rai NK, et al. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: a new era of herbonanoceutics. Molecules. 2020;25(13):3091. doi:10.3390/molecules25133091 PubMed DOI PMC

Vala AK. Intra- and extracellular biosynthesis of gold nanoparticles by a marine-derived Fungus Rhizopus oryzae. Synth React Inorganic, Met Nano-Metal Chem. 2014;44(9):1243–1246. doi:10.1080/15533174.2013.799492 DOI

AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. 2017;24(1):208–216. doi:10.1016/J.SJBS.2016.02.025 PubMed DOI PMC

Cunha FA, Cunha M da CSO, da Frota SM, et al. Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol. 2018;34(9):1–15. doi:10.1007/S11274-018-2514-8 PubMed DOI

Roy K, Sarkar CK, Ghosh CK. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci. 2014;5(8):953–959. doi:10.1007/S13204-014-0392-4 DOI

Olobayotan I, Akin-Osanaiye B. Biosynthesis of silver nanoparticles using baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiol. 2019;1(1A):526. doi:10.1099/ACMI.AC2019.PO0316 DOI

Yen San C, Mat don M. Biosynthesis of silver nanoparticles from Schizophyllum commune and in-vitro antibacterial and antifungal activity studies. J Phys Sci. 2013;24(2):83–96.

Tripathi RM, Shrivastav BR, Shrivastav A. Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET nanobiotechnology. 2018;12(4):509–513. doi:10.1049/IET-NBT.2017.0105 PubMed DOI PMC

Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod. 2014;55:202–206. doi:10.1016/J.INDCROP.2014.01.026 DOI

El-Wakil DA. Antifungal activity of silver nanoparticles by Trichoderma species: synthesis, characterization and biological evaluation. Egypt J Phytopathol. 2020;48(1):71–80. doi:10.21608/EJP.2020.49395.1015 DOI

Gemishev OT, Panayotova MI, Mintcheva NN, Djerahov LP, Tyuliev GT, Gicheva GD. A green approach for silver nanoparticles preparation by cell-free extract from Trichoderma reesei fungi and their characterization. Mater Res Express. 2019;6(9):095040. doi:10.1088/2053-1591/AB2E6A DOI

Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA-F, Bahkali AH. Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip. 2016;30(2):299–304. doi:10.1080/13102818.2015.1133255 DOI

Mukherjee P, Roy M, Mandal BP, et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008;19(7):075103. doi:10.1088/0957-4484/19/7/075103 PubMed DOI

Vahabi K, Dorcheh SK, Monajembashi S, et al. Stress promotes Arabidopsis - Piriformospora indica interaction. Plant Signaling & Behavior. 2016;11(5). doi:10.1080/15592324.2015.1136763 PubMed DOI PMC

Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2007;10(3):507–517. doi:10.1007/S11051-007-9275-X DOI

Jha AK, Prasad K. Understanding mechanism of fungus mediated nanosynthesis: a molecular approach. Adv Appl Through Fungal Nanobiotechnol. 2016;1–23. doi:10.1007/978-3-319-42990-8_1 DOI

Arnoldi M, Fritz M, Bäuerlein E, Radmacher M, Sackmann E, Boulbitch A. Bacterial turgor pressure can be measured by atomic force microscopy. Phys Rev E. 2000;62(1):1034. doi:10.1103/PhysRevE.62.1034 PubMed DOI

Vahabi K, Mansoori GA, Karimi S. Biosynthesis of Silver nanoparticles by Fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs). Insci J. 2011;1(1):65–79. doi:10.5640/insc.010165 DOI

Narayanan KB, Sakthivel N. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. World J Microbiol Biotechnol. 2013;29(11):2207–2211. doi:10.1007/S11274-013-1379-0 PubMed DOI

Prasad R, editor. Advances and applications through fungal nanobiotechnology. In: Fungal Nanobiotechnology; 2016. doi:10.1007/978-3-319-42990-8 DOI

Prasad R. Fungal nanotechnology. In: Prasad R, editor. Fungal Biology; 2017. doi:10.1007/978-3-319-68424-6 DOI

Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol. 2010;101(22):8772–8776. doi:10.1016/J.BIORTECH.2010.06.065 PubMed DOI

Rajakumar G, Rahuman AA, Roopan SM, et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;91:23–29. doi:10.1016/J.SAA.2012.01.011 PubMed DOI

Alani F, Moo-Young M, Anderson W. Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol. 2012;28(3):1081–1086. doi:10.1007/S11274-011-0906-0/FIGURES/5 PubMed DOI

Jaidev LR, Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B Biointerfaces. 2010;81(2):430–433. doi:10.1016/J.COLSURFB.2010.07.033 PubMed DOI

Pareek V, Bhargava A, Panwar J. Biomimetic approach for multifarious synthesis of nanoparticles using metal tolerant fungi: a mechanistic perspective. Mater Sci Eng B. 2020;262:114771. doi:10.1016/J.MSEB.2020.114771 DOI

Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus Niger: antimicrobial textiles and dye degradation studies. OpenNano. 2018;3:48–55. doi:10.1016/J.ONANO.2018.06.001 DOI

Chauhan A, Zubair S, Tufail S, et al. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine. 2011;6:2305–2319. doi:10.2147/IJN.S23195 PubMed DOI PMC

Govindappa M, Lavanya M, Aishwarya P, et al. Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. Bionanoscience. 2020;10(4):928–941. doi:10.1007/S12668-020-00719-Z/FIGURES/14 DOI

Munawer U, Raghavendra VB, Ningaraju S, et al. Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm. 2020;588:119729. doi:10.1016/J.IJPHARM.2020.119729 PubMed DOI

Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. 2005;3(1). doi:10.1186/1477-3155-3-8/FIGURES/9 PubMed DOI PMC

Chowdhury S, Basu A, Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett. 2014;9(1):365. doi:10.1186/1556-276X-9-365/FIGURES/8 PubMed DOI PMC

Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir. 2007;23(13):7113–7117. doi:10.1021/LA063627P PubMed DOI

Mishra A, Tripathy SK, Wahab R, et al. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2C 12 cells. Appl Microbiol Biotechnol. 2011;92(3):617–630. doi:10.1007/S00253-011-3556-0/FIGURES/15 PubMed DOI

Subramaniyan SA, Sheet S, Vinothkannan M, et al. One-pot facile synthesis of pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. J Nanosci Nanotechnol. 2017;18(5):3110–3125. doi:10.1166/JNN.2018.14661 PubMed DOI

Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 2020;83(1):72–80. doi:10.1002/JEMT.23390 PubMed DOI

Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J. Optimization and characterization of silver nanoparticle by endophytic fungi penicillium sp. isolated from curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. 2014;2014:408021. doi:10.1155/2014/408021 PubMed DOI PMC

Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control. 2018;28(1):28. doi:10.1186/S41938-018-0028-1/FIGURES/10 DOI

Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem. 2009;57(14):6246–6252. doi:10.1021/JF900337H PubMed DOI

Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515–519. doi:10.1021/NL0155274 DOI

Das S, Sudhagar P, Kang YS, Choi W. Graphene synthesis and application for solar cells. J Mater Res. 2014;29(3):299–319. doi:10.1557/JMR.2013.297 DOI

Sharma A, Verma N, Sharma A, Deva D, Sankararamakrishnan N. Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: synthesis, characterization and application in arsenic removal. Chem Eng Sci. 2010;65(11):3591–3601. doi:10.1016/J.CES.2010.02.052 DOI

Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK. Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J PharmTech Res. 2014;6(5):1718–1723.

Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 2007;3(2):203–208. doi:10.1166/JBN.2007.022 DOI

Mohammed fayaz A, Balaji K, Kalaichelvan PT, Venkatesan R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf B Biointerfaces. 2009;74(1):123–126. doi:10.1016/J.COLSURFB.2009.07.002 PubMed DOI

Ottoni CA, Simões MF, Fernandes S, et al. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 2017;7(1):1–10. doi:10.1186/S13568-017-0332-2 PubMed DOI PMC

Govindappa M, Farheen H, Chandrappa CP, Channabasava R, Rai RV, Raghavendra VB. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci Nanosci Nanotechnol. 2016;7(3):035014. doi:10.1088/2043-6262/7/3/035014 DOI

Kumar H, Bhardwaj K, Cruz-Martins N, et al. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: a mini review. Molecules. 2021;26(11):3447. doi:10.3390/MOLECULES26113447 PubMed DOI PMC

de Francisco L, Pinto D, Rosseto H, et al. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res Int. 2018;105:537–547. doi:10.1016/J.FOODRES.2017.11.046 PubMed DOI

Correa-Royero J, Tangarife V, Durán C, Stashenko E, Mesa-Arango A. In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus. Rev Bras Farmacogn. 2010;20(5):734–741. doi:10.1590/S0102-695X2010005000021 DOI

Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci. 2008;4(2):141–144. doi:10.2174/157341308784340804 DOI

Li GJ, Hyde KD, Zhao RL, et al. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;78(1):1–237. doi:10.1007/S13225-016-0366-9 DOI

Brown SD, Nativo P, Smith J-A, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132(13):4678–4684. doi:10.1021/JA908117A PubMed DOI PMC

Rodrigues AG, Ping LY, Marcato PD, et al. Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol. 2012;97(2):775–782. doi:10.1007/S00253-012-4209-7 PubMed DOI

Ishida K, Cipriano TF, Rocha GM, et al. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz. 2013;109(2):220–228. doi:10.1590/0074-0276130269 PubMed DOI PMC

Arun G, Eyini M, Gunasekaran P. Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng. 2014;19(6):1083–1090. doi:10.1007/s12257-014-0071-z DOI

Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine. 2016;11:1899. doi:10.2147/IJN.S98339 PubMed DOI PMC

Narasimha G. Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus Niger. Nano Sci Nano Technol. 2012;6(1):18–20.

Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater. 2005;17(24):6042–6052. doi:10.1021/CM051532N DOI

Sharma P, Mehta M, Dhanjal DS, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019;309:108720. doi:10.1016/j.cbi.2019.06.033 PubMed DOI

Dhanjal DS, Mehta M, Chopra C, et al. Novel controlled release pulmonary drug delivery systems: current updates and challenges. In: Modeling and Control of Drug Delivery Systems. Academic Press; 2021:253–272. doi:10.1016/B978-0-12-821185-4.00001-4 DOI

Ortega FG, Fernández-Baldo MA, Fernández JG, et al. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine. 2015;10:2021. doi:10.2147/IJN.S75835 PubMed DOI PMC

Xia ZK, Ma QH, Li SY, et al. The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect. 2016;49(2):182–188. doi:10.1016/J.JMII.2014.04.013 PubMed DOI

Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599. doi:10.1016/J.TIBTECH.2016.02.006 PubMed DOI

Basu A, Ray S, Chowdhury S, et al. Evaluating the antimicrobial, apoptotic, and cancer cell gene delivery properties of protein-capped gold nanoparticles synthesized from the edible mycorrhizal fungus Tricholoma crassum. Nanoscale Res Lett. 2018;13(1):154. doi:10.1186/S11671-018-2561-Y/FIGURES/10 PubMed DOI PMC

Vahidi H, Kobarfard F, Alizadeh A, Saravanan M, Barabadi H. Green nanotechnology-based tellurium nanoparticles: exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg Chem Commun. 2021;124:108385. doi:10.1016/J.INOCHE.2020.108385 DOI

Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus Florida and its anticancer evaluation. J Photochem Photobiol B Biol. 2013;125:63–69. doi:10.1016/J.JPHOTOBIOL.2013.05.002 PubMed DOI

Prasad C, Krishna Murthy P, Hari Krishna RH, Sreenivasa Rao R, Suneetha V, Venkateswarlu P. Bio-inspired green synthesis of RGO/Fe3O4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb(II) from aqueous solution. J Environ Chem Eng. 2017;5(5):4374–4380. doi:10.1016/J.JECE.2017.07.026 DOI

Surendiran A, Sandhiya S, Pradhan SC, Adithan C. Novel applications of nanotechnology in medicine: eBSCOhost. Indian J Med Res. 2009;130(6):689–701. PubMed

Janith W, Chamindri W. Applications of nanotechnology in drug delivery and design-an insight-Indian journals. Curr Trends Biotechnol Pharm. 2016;10(1):78–91.

Daisy P, Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine. 2012;7:1189. doi:10.2147/IJN.S26650 PubMed DOI PMC

Mohammed fayaz A, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT. Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem. 2011;46(3):636–641. doi:10.1016/J.PROCBIO.2010.11.001 DOI

You C, Han C, Wang X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39(9):9193–9201. doi:10.1007/S11033-012-1792-8 PubMed DOI PMC

Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–588. doi:10.1016/J.TIBTECH.2010.07.006 PubMed DOI

Wang P, Li Y, Huang X, Wang L. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta. 2007;73(3):431–437. doi:10.1016/J.TALANTA.2007.04.022 PubMed DOI

Yun Y, Dong Z, Lee N, et al. Revolutionizing biodegradable metals. Mater Today. 2009;12(10):22–32. doi:10.1016/S1369-7021(09 DOI

Huang Y, Li X, Liao Z, et al. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007;33(2):161–166. doi:10.1016/J.BURNS.2006.06.020 PubMed DOI

Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A. Biosynthesis of silver nanoparticles from Aspergillus Niger and evaluation of its wound healing activity in experimental rat model. Int J PharmTech Res. 2009;1(4):1523–1529.

Marcato PD, Paula De LB, Melo PS, et al. In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J Nanomater. 2015;2015:439820. doi:10.1155/2015/439820 DOI

Singh S, Dhanjal DS, Thotapalli S, Sharma P, Singh J. Importance and recent aspects of fungi-based food ingredients. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020:245–254.

Singh S, Dhanjal DS, Thotapalli S, Sharma P, Singh J. Fungal enzyme inhibitors: repository of novel cancer therapeutics. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020:121–133.

Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014;2(1):1–15. doi:10.1155/2014/843687 PubMed DOI PMC

Maczey N, Dhendup K, Cannon P. Thitarodes namnai sp. nov. and T. caligophilus sp. nov. (Lepidoptera: hepialidae), hosts of the economically important entomopathogenic fungus Ophiocordyceps sinensis in Bhutan. Zootaxa. 2010;24(12):42–52. doi:10.11646/zootaxa.2412.1.3 DOI

Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol, Biol Med. 2010;6(4):570–574. doi:10.1016/J.NANO.2009.12.002 PubMed DOI

Handa O, Kokura S, Adachi S, et al. Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology. 2006;227(1–2):62–72. doi:10.1016/J.TOX.2006.07.018 PubMed DOI

Ishiwatari S, Suzuki T, Hitomi T, Yoshino T, Matsukuma S, Tsuji T. Effects of methyl paraben on skin keratinocytes. J Appl Toxicol. 2007;27(1):1–9. doi:10.1002/JAT.1176 PubMed DOI

Gajbhiye S, Sakharwade S, Gajbhiye S, Sakharwade S. Silver Nanoparticles in Cosmetics. J Cosmet Dermatol Sci Appl. 2016;6(1):48–53. doi:10.4236/JCDSA.2016.61007 DOI

Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol, Biol Med. 2009;5(4):382–386. doi:10.1016/J.NANO.2009.06.005 PubMed DOI

Baskar K, Raj GA, Mohan PM, Lingathura S, Ambrose T, Muthu C. Larvicidal and growth inhibitory activities of entomopathogenic fungus, Beauveria bassiana against Asian army worm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Entomol. 2012;9(3):155–162. doi:10.3923/je.2012.155.162 DOI

Park J-H, Choi G-J, Lee S-W, Kim K-M, Jung H-S. Griseofulvin from Xylaria sp. Strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol. 2005;15(1):112–117.

Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346. doi:10.1088/0957-4484/16/10/059 PubMed DOI

Kim J, Pitts B, Stewart PS, Camper A, Yoon J. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother. 2008;52(4):1446–1453. doi:10.1128/AAC.00054-07 PubMed DOI PMC

Rajakumar G, Rahuman AA, Roopan SM, et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;91:23–29. doi:10.1016/J.SAA.2012.01.011 PubMed DOI

Ruma K, Sunil K, Prakash HS. Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharm Pharm Sci. 2013;5(3):889–897.

Bonderman D, Pretsch I, Steringer-Mascherbauer R, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with Diastolic Heart Failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146(5):1274–1285. doi:10.1378/CHEST.14-0106 PubMed DOI PMC

Naz S, Vallejo M, García A, Barbas C. Method validation strategies involved in non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105. doi:10.1016/J.CHROMA.2014.04.071 PubMed DOI

Bhimba BV, Franco DAAD, Mathew JM, Jose GM, Joel EL, Thangaraj M. Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med. 2012;10(1):77–80. doi:10.1016/S1875-5364(12 PubMed DOI

Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421–5429. doi:10.1021/NN1010792 PubMed DOI

Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol, Biol Med. 2010;6(1):103–109. doi:10.1016/J.NANO.2009.04.006 PubMed DOI

Zheng D, Hu C, Gan T, Dang X, Hu S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens Actuators B Chem. 2010;148(1):247–252. doi:10.1016/J.SNB.2010.04.031 DOI

Thibault S, Aubriet H, Arnoult C, Ruch D. Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XPS. Microchim Acta. 2008;163(3):211–217. doi:10.1007/S00604-008-0028-Z DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...