Mycosynthesis of Metal-Containing Nanoparticles-Synthesis by Ascomycetes and Basidiomycetes and Their Application

. 2022 Dec 24 ; 24 (1) : . [epub] 20221224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613746

Grantová podpora
No. SP2022/8 The Project for Specific University Research (SGS) Faculty of Mining and Geology of VSB - Technical University of Ostrava
VEGA 1/0175/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences (Vedecká grantová agentúra MŠVVaŠ SR a SAV)
VEGA 1/0139/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences (Vedecká grantová agentúra MŠVVaŠ SR a SAV)
04-GASPU-2021 Grant Agency of the Slovak University of Agriculture in Nitra
CG-CAM-22/23-504 Qatar University
Ramanujan fellowship Science and Engineering Research Board (SERB), New Delhi

Fungi contain species with a plethora of ways of adapting to life in nature. Consequently, they produce large amounts of diverse biomolecules that can be generated on a large scale and in an affordable manner. This makes fungi an attractive alternative for many biotechnological processes. Ascomycetes and basidiomycetes are the most commonly used fungi for synthesis of metal-containing nanoparticles (NPs). The advantages of NPs created by fungi include the use of non-toxic fungus-produced biochemicals, energy efficiency, ambient temperature, pressure conditions, and the ability to control and tune the crystallinity, shape, and size of the NPs. Furthermore, the presence of biomolecules might serve a dual function as agents in NP formation and also capping that can tailor the (bio)activity of subsequent NPs. This review summarizes and reviews the synthesis of different metal, metal oxide, metal sulfide, and other metal-based NPs mediated by reactive media derived from various species. The phyla ascomycetes and basidiomycetes are presented separately. Moreover, the practical application of NP mycosynthesis, particularly in the fields of biomedicine, catalysis, biosensing, mosquito control, and precision agriculture as nanofertilizers and nanopesticides, has been studied so far. Finally, an outlook is provided, and future recommendations are proposed with an emphasis on the areas where mycosynthesized NPs have greater potential than NPs synthesized using physicochemical approaches. A deeper investigation of the mechanisms of NP formation in fungi-based media is needed, as is a focus on the transfer of NP mycosynthesis from the laboratory to large-scale production and application.

Zobrazit více v PubMed

Afzal S., Aftab T., Singh N.K. Impact of Zinc Oxide and Iron Oxide Nanoparticles on Uptake, Translocation, and Physiological Effects in Oryza Sativa L. J. Plant Growth Regul. 2022;41:1445–1461. doi: 10.1007/s00344-021-10388-1. DOI

Mughal B., Zaidi S.Z.J., Zhang X., Hassan S.U. Biogenic Nanoparticles: Synthesis, Characterisation and Applications. Appl. Sci. 2021;11:2598. doi: 10.3390/app11062598. DOI

Dogru E., Demirbas A., Altinsoy B., Duman F., Ocsoy I. Formation of Matricaria Chamomilla Extract-Incorporated Ag Nanoparticles and Size-Dependent Enhanced Antimicrobial Property. J. Photochem. Photobiol. B. 2017;174:78–83. doi: 10.1016/j.jphotobiol.2017.07.024. PubMed DOI

Kusiak-Nejman E., Wojnarowicz J., Morawski A.W., Narkiewicz U., Sobczak K., Gierlotka S., Lojkowski W. Size-Dependent Effects of ZnO Nanoparticles on the Photocatalytic Degradation of Phenol in a Water Solution. Appl. Surf. Sci. 2021;541:148416. doi: 10.1016/j.apsusc.2020.148416. DOI

Gahlawat G., Choudhury A.R. A Review on the Biosynthesis of Metal and Metal Salt Nanoparticles by Microbes. RSC Adv. 2019;9:12944–12967. doi: 10.1039/C8RA10483B. PubMed DOI PMC

Horváthová H., Dercová K., Tlčíková M., Hurbanová M. Biological Synthesis of Nanoparticles: Iron-Based Plant Bionanoparticles and Their Use for Remediation of the Contaminated Environment. Chem. Listy. 2022;116:405–415. doi: 10.54779/chl20220405. DOI

Patra C.R., Mukherjee S., Kotcherlakota R. Biosynthesized Silver Nanoparticles: A Step Forward for Cancer Theranostics? Nanomedicine. 2014;9:1445–1448. doi: 10.2217/nnm.14.89. PubMed DOI

Salem S.S., Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021;199:344–370. doi: 10.1007/s12011-020-02138-3. PubMed DOI

Noman E., Al-Gheethi A., Talip B.A., Mohamed R., Kassim A.H. Inactivating Pathogenic Bacteria in Greywater by Biosynthesized Cu/Zn Nanoparticles from Secondary Metabolite of Aspergillus Iizukae; Optimization, Mechanism and Techno Economic Analysis. PLoS ONE. 2019;14:e0221522. doi: 10.1371/journal.pone.0221522. PubMed DOI PMC

Yadav A., Kon K., Kratosova G., Duran N., Ingle A.P., Rai M. Fungi as an Efficient Mycosystem for the Synthesis of Metal Nanoparticles: Progress and Key Aspects of Research. Biotechnol. Lett. 2015;37:2099–2120. doi: 10.1007/s10529-015-1901-6. PubMed DOI

Siddiqi K.S., Husen A. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application. Nanoscale Res. Lett. 2016;11:98. doi: 10.1186/s11671-016-1311-2. PubMed DOI PMC

Wold W.S.M., Suzuki I. The Citric Acid Fermentation by Aspergillus Niger: Regulation by Zinc of Growth and Acidogenesis. Can. J. Microbiol. 1976;22:1083–1092. doi: 10.1139/m76-159. PubMed DOI

Toghueo R.M.K., Boyom F.F. Endophytic Penicillium Species and Their Agricultural, Biotechnological, and Pharmaceutical Applications. 3 Biotech. 2020;10:107. doi: 10.1007/s13205-020-2081-1. PubMed DOI PMC

Manoharachary C., Deshaboina N. Biodiversity, Taxonomy and Plant Disease Diagnostics of Plant Pathogenic Fungi from India. Indian Phytopathol. 2021;74:413–423. doi: 10.1007/s42360-021-00357-9. DOI

Müller J., Polak A. Antifungal Agents. Birkhäuser Basel; Basel, Switzerland: 2003. Classification and Taxonomy of Fungi Pathogenic for Warm-Blooded Hosts; pp. 1–12. PubMed

Owaid M.N., Ibraheem I.J. Mycosynthesis of Nanoparticles Using Edible and Medicinal Mushrooms. Eur. J. Nanomed. 2017;9:5–23. doi: 10.1515/ejnm-2016-0016. DOI

Elsakhawy T., Omara A.E.-D., Abowaly M., El-Ramady H., Badgar K., Llanaj X., Törős G., Hajdú P., Prokisch J. Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability. 2022;14:4328. doi: 10.3390/su14074328. DOI

Fouda H., Sofy M. Effect of Biological Synthesis of Nanoparticles from Penicillium Chrysogenum as Well as Traditional Salt and Chemical Nanoparticles of Zinc on Canola Plant Oil Productivity and Metabolic Activity. Egypt J. Chem. 2021;65:507–516. doi: 10.21608/ejchem.2021.95120.4469. DOI

Dhanjal D.S., Mehra P., Bhardwaj S., Singh R., Sharma P., Nepovimova E., Chopra C., Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int. J. Nanomed. 2022;17:2505–2533. doi: 10.2147/IJN.S363282. PubMed DOI PMC

Chan Y.S., Mat Don M. Biosynthesis and Structural Characterization of Ag Nanoparticles from White Rot Fungi. Mater. Sci. Eng. C. 2013;33:282–288. doi: 10.1016/j.msec.2012.08.041. PubMed DOI

Kaur G., Kalia A., Sodhi H.S. Size Controlled, Time-Efficient Biosynthesis of Silver Nanoparticles from Pleurotus Florida Using Ultra-Violet, Visible Range, and Microwave Radiations. Inorg. Nano-Met. Chem. 2020;50:35–41. doi: 10.1080/24701556.2019.1661466. DOI

Navaladian S., Viswanathan B., Varadarajan T.K., Viswanath R.P. Microwave-Assisted Rapid Synthesis of Anisotropic Ag Nanoparticles by Solid State Transformation. Nanotechnology. 2008;19:045603. doi: 10.1088/0957-4484/19/04/045603. PubMed DOI

Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Ramani R., Parischa R., Ajayakumar P.v, Alam M., et al. Bioreduction of AuCl4− Ions by the Fungus, Verticillium Sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI

Aisida S.O., Akpa P.A., Ahmad I., Zhao T., Maaza M., Ezema F.I. Bio-Inspired Encapsulation and Functionalization of Iron Oxide Nanoparticles for Biomedical Applications. Eur. Polym. J. 2020;122:109371. doi: 10.1016/j.eurpolymj.2019.109371. DOI

Aisida S.O., Batool A., Khan F.M., Rahman L., Mahmood A., Ahmad I., Zhao T., Maaza M., Ezema F.I. Calcination Induced PEG-Ni-ZnO Nanorod Composite and Its Biomedical Applications. Mater. Chem. Phys. 2020;255:123603. doi: 10.1016/j.matchemphys.2020.123603. DOI

Javed R., Zia M., Naz S., Aisida S.O., ul Ain N., Ao Q. Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. J. Nanobiotechnol. 2020;18:172. doi: 10.1186/s12951-020-00704-4. PubMed DOI PMC

Ezealigo U.S., Ezealigo B.N., Aisida S.O., Ezema F.I. Iron Oxide Nanoparticles in Biological Systems: Antibacterial and Toxicology Perspective. JCIS Open. 2021;4:100027. doi: 10.1016/j.jciso.2021.100027. DOI

Aisida S.O., Ugwu K., Nwanya A.C., Akpa P.A., Madiba I.G., Bashir A.K.H., Botha S., Ejikeme P.M., Zhao T., Ahmad I., et al. Dry Gongronema Latifolium Aqueous Extract Mediated Silver Nanoparticles by One-Step in-Situ Biosynthesis for Antibacterial Activities. Surf. Interfaces. 2021;24:101116. doi: 10.1016/j.surfin.2021.101116. DOI

Onyedikachi O.A., Aisida S.O., Agbogu A., Rufus I., Ahmad I., Maaza M., Ezema F.I. Zinc Ferrite Nanoparticles Capped with Gongronema Latifolium for Moderate Hyperthermia Applications. Appl. Phys. A. 2022;128:95. doi: 10.1007/s00339-021-05244-8. DOI

Batool A., Aisida S.O., Rufus I., Mahmood A., Ahmad I., Zhao T., Ezema F.I. Tailoring the Microstructural, Optical, and Magnetic Properties of MgFe 2 O 4 Nanoparticles Capped Polyethylene Glycol Through a Bio-Inspired Method. J. Macromol. Sci. Part B. 2022;61:860–870. doi: 10.1080/00222348.2022.2116916. DOI

Aisida S.O., Onwujiobi C., Ahmad I., Zhao T., Maaza M., Ezema F.I. Biogenic Synthesis of Zinc Oxide Nanorods for Biomedical Applications and Photodegradation of Rhodamine B. Mater. Today Commun. 2022;33:104660. doi: 10.1016/j.mtcomm.2022.104660. DOI

Bhardwaj A.K., Shukla A., Maurya S., Singh S.C., Uttam K.N., Sundaram S., Singh M.P., Gopal R. Direct Sunlight Enabled Photo-Biochemical Synthesis of Silver Nanoparticles and Their Bactericidal Efficacy: Photon Energy as Key for Size and Distribution Control. J. Photochem. Photobiol. B. 2018;188:42–49. doi: 10.1016/j.jphotobiol.2018.08.019. PubMed DOI

Gade A.K., Bonde P., Ingle A.P., Marcato P.D., Durán N., Rai M.K. Exploitation of Aspergillus Niger for Synthesis of Silver Nanoparticles. J. Biobased Mater. Bioenergy. 2008;2:243–247. doi: 10.1166/jbmb.2008.401. DOI

Bhargava A., Jain N., Barathi L.M., Akhtar M., Yun Y.-S., Panwar J. Synthesis, Characterization and Mechanistic Insights of Mycogenic Iron Oxide Nanoparticles. J. Nanoparticle Res. 2013;15:2031. doi: 10.1007/s11051-013-2031-5. DOI

Abdeen M., Sabry S., Ghozlan H., El-Gendy A.A., Carpenter E.E. Microbial-Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus Niger YESM1 and Supercritical Condition of Ethanol. J. Nanomater. 2016;2016:9174891. doi: 10.1155/2016/9174891. DOI

Bhambure R., Bule M., Shaligram N., Kamat M., Singhal R. Extracellular Biosynthesis of Gold Nanoparticles Using Aspergillus Niger—Its Characterization and Stability. Chem. Eng. Technol. 2009;32:1036–1041. doi: 10.1002/ceat.200800647. DOI

Vigneshwaran N., Kathe A.A., Varadarajan P.v., Nachane R.P., Balasubramanya R.H. Biomimetics of Silver Nanoparticles by White Rot Fungus, Phaenerochaete Chrysosporium. Colloids Surf. B Biointerfaces. 2006;53:55–59. doi: 10.1016/j.colsurfb.2006.07.014. PubMed DOI

Sriramulu M., Sumathi S. Biosynthesis of Palladium Nanoparticles Using Saccharomyces Cerevisiae Extract and Its Photocatalytic Degradation Behaviour. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018;9:025018. doi: 10.1088/2043-6254/aac506. DOI

Fayaz A.M., Balaji K., Girilal M., Yadav R., Kalaichelvan P.T., Venketesan R. Biogenic Synthesis of Silver Nanoparticles and Their Synergistic Effect with Antibiotics: A Study against Gram-Positive and Gram-Negative Bacteria. Nanomedicine. 2010;6:103–109. doi: 10.1016/j.nano.2009.04.006. PubMed DOI

Tyagi S., Tyagi P.K., Gola D., Chauhan N., Bharti R.K. Extracellular Synthesis of Silver Nanoparticles Using Entomopathogenic Fungus: Characterization and Antibacterial Potential. SN Appl. Sci. 2019;1:1545. doi: 10.1007/s42452-019-1593-y. DOI

Baker S.E., Bennett J.W. An Overview of the Genus Aspergillus. In: Goldman G.H., Osmani S.A., editors. The Aspergilli: Genomics, medical aspects, biotechnology, and research methods. CRC Press; Boca Raton, FL, USA: 2007. pp. 3–13.

Humber R.A. Evolution of Entomopathogenicity in Fungi. J. Invertebr. Pathol. 2008;98:262–266. doi: 10.1016/j.jip.2008.02.017. PubMed DOI

Dobbeler P. Biodiversity of Bryophilous Ascomycetes. Biodivers. Conserv. 1997;6:721–738. doi: 10.1023/A:1018370304090. DOI

Singh P., Kim Y.-J., Zhang D., Yang D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016;34:588–599. doi: 10.1016/j.tibtech.2016.02.006. PubMed DOI

Akbar M., Haroon U., Ali M., Tahir K., Chaudhary H.J., Munis M.F.H. Mycosynthesized Fe2O3 Nanoparticles Diminish Brown Rot of Apple Whilst Maintaining Composition and Pertinent Organoleptic Properties. J. Appl. Microbiol. 2022;132:3735–3745. doi: 10.1111/jam.15483. PubMed DOI

Lan Chi N.T., Veeraragavan G.R., Brindhadevi K., Chinnathambi A., Salmen S.H., Alharbi S.A., Krishnan R., Pugazhendhi A. Fungi Fabrication, Characterization, and Anticancer Activity of Silver Nanoparticles Using Metals Resistant Aspergillus Niger. Environ. Res. 2022;208:112721. doi: 10.1016/j.envres.2022.112721. PubMed DOI

Muñoz A.J., Espínola F., Ruiz E., Cuartero M., Castro E. Biotechnological Use of the Ubiquitous Fungus Penicillium Sp. 8L2: Biosorption of Ag(I) and Synthesis of Silver Nanoparticles. J. Environ. Manag. 2022;316:115281. doi: 10.1016/j.jenvman.2022.115281. PubMed DOI

Rashwan D., Nagy R., El-deen M., Elhakim H.A., Mohamed M., Afify M., abd el Hamed M., abd el razik M. Green Synthesis of Zinc Oxide Nanocomposite Using Fusarium Oxysporum and Evaluation of the Anticancer Effect on Hepatocellular Carcinoma. Egypt J. Chem. 2021;65:197–207. doi: 10.21608/ejchem.2021.91841.4361. DOI

Soni N., Prakash S. Microbial Synthesis of Spherical Nanosilver and Nanogold for Mosquito Control. Ann. Microbiol. 2014;64:1099–1111. doi: 10.1007/s13213-013-0749-z. DOI

Bhadani R.v, Gajera H.P., Hirpara D.G., Savaliya D.D., Anuj S.A. Biosynthesis and Characterization of Extracellular Metabolites-Based Nanoparticles to Control the Whitefly. Arch. Microbiol. 2022;204:311. doi: 10.1007/s00203-022-02917-7. PubMed DOI

Soltani Nejad M., Samandari Najafabadi N., Aghighi S., Pakina E., Zargar M. Evaluation of Phoma Sp. Biomass as an Endophytic Fungus for Synthesis of Extracellular Gold Nanoparticles with Antibacterial and Antifungal Properties. Molecules. 2022;27:1181. doi: 10.3390/molecules27041181. PubMed DOI PMC

Mousa S.A., El-Sayed E.-S.R., Mohamed S.S., Abo El-Seoud M.A., Elmehlawy A.A., Abdou D.A.M. Novel Mycosynthesis of Co3O4, CuO, Fe3O4, NiO, and ZnO Nanoparticles by the Endophytic Aspergillus Terreus and Evaluation of Their Antioxidant and Antimicrobial Activities. Appl. Microbiol. Biotechnol. 2021;105:741–753. doi: 10.1007/s00253-020-11046-4. PubMed DOI

Senapati S., Syed A., Khan S., Pasricha R., Khan M.I., Kumar R., Ahmad A. Extracellular Biosynthesis of Metal Sulfide Nanoparticles Using the Fungus Fusarium Oxysporum. Curr. Nanosci. 2014;10:588–595. doi: 10.2174/1573413710666140303235325. DOI

Syed A., al Saedi M.H., Bahkali A.H., Elgorban A.M., Kharat M., Pai K., Ghodake G., Ahmad A. Biological Synthesis of α-Ag2S Composite Nanoparticles Using the Fungus Humicola Sp. and Its Biomedical Applications. J. Drug Deliv. Sci. Technol. 2021;66:102770. doi: 10.1016/j.jddst.2021.102770. DOI

Pereira L., Dias N., Carvalho J., Fernandes S., Santos C., Lima N. Synthesis, Characterization and Antifungal Activity of Chemically and Fungal-Produced Silver Nanoparticles against Trichophyton Rubrum. J. Appl. Microbiol. 2014;117:1601–1613. doi: 10.1111/jam.12652. PubMed DOI

El-Sayyad G.S., Mosallam F.M., El-Batal A.I. One-Pot Green Synthesis of Magnesium Oxide Nanoparticles Using Penicillium Chrysogenum Melanin Pigment and Gamma Rays with Antimicrobial Activity against Multidrug-Resistant Microbes. Adv. Powder Technol. 2018;29:2616–2625. doi: 10.1016/j.apt.2018.07.009. DOI

El-Batal A.I., El-Sayyad G.S., Mosallam F.M., Fathy R.M. Penicillium Chrysogenum-Mediated Mycogenic Synthesis of Copper Oxide Nanoparticles Using Gamma Rays for In Vitro Antimicrobial Activity Against Some Plant Pathogens. J. Clust. Sci. 2020;31:79–90. doi: 10.1007/s10876-019-01619-3. DOI

Mohammed Fayaz A., Balaji K., Kalaichelvan P.T., Venkatesan R. Fungal Based Synthesis of Silver Nanoparticles—An Effect of Temperature on the Size of Particles. Colloids Surf. B Biointerfaces. 2009;74:123–126. doi: 10.1016/j.colsurfb.2009.07.002. PubMed DOI

Mishra A., Kumari M., Pandey S., Chaudhry V., Gupta K.C., Nautiyal C.S. Biocatalytic and Antimicrobial Activities of Gold Nanoparticles Synthesized by Trichoderma Sp. Bioresour. Technol. 2014;166:235–242. doi: 10.1016/j.biortech.2014.04.085. PubMed DOI

Dhillon G.S., Brar S.K., Kaur S., Verma M. Green Approach for Nanoparticle Biosynthesis by Fungi: Current Trends and Applications. Crit. Rev. Biotechnol. 2012;32:49–73. doi: 10.3109/07388551.2010.550568. PubMed DOI

Bhainsa K.C., D’Souza S.F. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus Fumigatus. Colloids Surf. B Biointerfaces. 2006;47:160–164. doi: 10.1016/j.colsurfb.2005.11.026. PubMed DOI

Vigneshwaran N., Ashtaputre N.M., Varadarajan P.V., Nachane R.P., Paralikar K.M., Balasubramanya R.H. Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus Flavus. Mater. Lett. 2007;61:1413–1418. doi: 10.1016/j.matlet.2006.07.042. DOI

Lotfy W.A., Alkersh B.M., Sabry S.A., Ghozlan H.A. Biosynthesis of Silver Nanoparticles by Aspergillus Terreus: Characterization, Optimization, and Biological Activities. Front. Bioeng. Biotechnol. 2021;9:633468. doi: 10.3389/fbioe.2021.633468. PubMed DOI PMC

Verma V.C., Kharwar R.N., Gange A.C. Biosynthesis of Antimicrobial Silver Nanoparticles by the Endophytic Fungus Aspergillus Clavatus. Nanomedicine. 2010;5:33–40. doi: 10.2217/nnm.09.77. PubMed DOI

Verma V.C., Singh S.K., Solanki R., Prakash S. Biofabrication of Anisotropic Gold Nanotriangles Using Extract of Endophytic Aspergillus Clavatus as a Dual Functional Reductant and Stabilizer. Nanoscale Res. Lett. 2010;6:16. doi: 10.1007/s11671-010-9743-6. PubMed DOI PMC

Rajesh Kumar R., Poornima Priyadharsani K., Thamaraiselvi K. Mycogenic Synthesis of Silver Nanoparticles by the Japanese Environmental Isolate Aspergillus Tamarii. J. Nanoparticle Res. 2012;14:860. doi: 10.1007/s11051-012-0860-2. DOI

Nayak B.K., Anitha K. Combined Effects of Antibiotics and AgNPs Biosynthesized from Aspergillus Ustus Studied against Few Pathogenic Bacteria. Int. J. Pharmtech. Res. 2014;6:1976–1980.

Phanjom P., Ahmed G. Biosynthesis of Silver Nanoparticles by Aspergillus Oryzae (MTCC No. 1846) and Its Characterizations. Nanosci. Nanotechnol. 2015;5:14–21. doi: 10.5923/j.nn.20150501.03. DOI

Bharathidasan R., Panneerselvam A. Biosynthesis and Characterization of Silver Nanoparticles Using Endophytic Fungi Aspergillus Concius, Penicillium Janthinellum and Phomosis Sp. Int. J. Pharm. Sci. Res. 2012;3:3163–3169.

Rajput S., Werezuk R., Lange R.M., McDermott M.T. Fungal Isolate Optimized for Biogenesis of Silver Nanoparticles with Enhanced Colloidal Stability. Langmuir. 2016;32:8688–8697. doi: 10.1021/acs.langmuir.6b01813. PubMed DOI

Durán N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium Oxysporum Strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC

Bansal V., Rautaray D., Bharde A., Ahire K., Sanyal A., Ahmad A., Sastry M. Fungus-Mediated Biosynthesis of Silica and Titania Particles. J. Mater. Chem. 2005;15:2583–2589. doi: 10.1039/b503008k. DOI

Bansal V., Poddar P., Ahmad A., Sastry M. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc. 2006;128:11958–11963. doi: 10.1021/ja063011m. PubMed DOI

Kumar S.A., Ansary A.A., Abroad A., Khan M.I. Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium Oxysporum. J. Biomed. Nanotechnol. 2007;3:190–194. doi: 10.1166/jbn.2007.027. DOI

Gupta K., Chundawat T.S. Proceedings of the AIP Conference Proceedings 2369. AIP Publishing; New York, NY, USA: 2021. Green Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles Derived from Fusarium Oxysporum; p. 020082.

Naimi-Shamel N., Pourali P., Dolatabadi S. Green Synthesis of Gold Nanoparticles Using Fusarium Oxysporum and Antibacterial Activity of Its Tetracycline Conjugant. J. Mycol. Med. 2019;29:7–13. doi: 10.1016/j.mycmed.2019.01.005. PubMed DOI

Ingle A., Rai M., Gade A., Bawaskar M. Fusarium Solani: A Novel Biological Agent for the Extracellular Synthesis of Silver Nanoparticles. J. Nanoparticle Res. 2009;11:2079–2085. doi: 10.1007/s11051-008-9573-y. DOI

El-Rafie M.H., Shaheen T.I., Mohamed A.A., Hebeish A. Bio-Synthesis and Applications of Silver Nanoparticles onto Cotton Fabrics. Carbohydr. Polym. 2012;90:915–920. doi: 10.1016/j.carbpol.2012.06.020. PubMed DOI

Sogra Fathima B., Balakrishnan R.M. Biosynthesis and Optimization of Silver Nanoparticles by Endophytic Fungus Fusarium Solani. Mater. Lett. 2014;132:428–431. doi: 10.1016/j.matlet.2014.06.143. DOI

Basavaraja S., Balaji S.D., Lagashetty A., Rajasab A.H., Venkataraman A. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium Semitectum. Mater. Res. Bull. 2008;43:1164–1170. doi: 10.1016/j.materresbull.2007.06.020. DOI

Ingle A., Gade A., Pierrat S., Sonnichsen C., Rai M. Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium Acuminatum and Its Activity Against Some Human Pathogenic Bacteria. Curr. Nanosci. 2008;4:141–144. doi: 10.2174/157341308784340804. DOI

Shelar G.B., Chavan A.M. Fusarium Semitectum Mediated Extracellular Synthesis of Silver Nanoparticles and Their Antibacterial Activity. Int. J. Biomed. Adv. Res. 2014;5:20–24.

Bawaskar M., Gaikwad S., Ingle A., Rathod D., Gade A., Duran N., Marcato P.D., Rai M. A New Report on Mycosynthesis of Silver Nanoparticles by Fusarium Culmorum. Curr. Nanosci. 2010;6:376–380. doi: 10.2174/157341310791658919. DOI

Hamad M.T. Biosynthesis of Silver Nanoparticles by Fungi and Their Antibacterial Activity. Int. J. Environ. Sci. Technol. 2019;16:1015–1024. doi: 10.1007/s13762-018-1814-8. DOI

Kathiresan K., Manivannan S., Nabeel M.A., Dhivya B. Studies on Silver Nanoparticles Synthesized by a Marine Fungus, Penicillium Fellutanum Isolated from Coastal Mangrove Sediment. Colloids Surf. B Biointerfaces. 2009;71:133–137. doi: 10.1016/j.colsurfb.2009.01.016. PubMed DOI

Kamalakannan S., Gobinath C., Ananth S. Synthesis and Characterization of Fungus Mediated Silver Nanoparticle for Toxicity on Filarial Vector, Culex Quinquefasciatus. Int. J. Pharm. Sci. Rev. Res. 2014;24:124–132.

Datta M., Desay D. Green Synthesis of Silver Antimicrobials for Its Potential Application in Control of Nosocomial Infections. Asian J. Pharm. Clin. Res. 2015;8:219–223.

Devi L.S., Bareh D.A., Joshi S.R. Studies on Biosynthesis of Antimicrobial Silver Nanoparticles Using Endophytic Fungi Isolated from the Ethno-Medicinal Plant Gloriosa Superba L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014;84:1091–1099. doi: 10.1007/s40011-013-0185-7. DOI

Honary S., Barabadi H., Gharaei-Fathabad E., Naghibi F. Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium Citrinum. Trop. J. Pharm. Res. 2013;12:7–11. doi: 10.4314/tjpr.v12i1.2. DOI

Maliszewska I., Juraszek A., Bielska K. Green Synthesis and Characterization of Silver Nanoparticles Using Ascomycota Fungi Penicillium Nalgiovense AJ12. J. Clust. Sci. 2014;25:989–1004. doi: 10.1007/s10876-013-0683-z. DOI

Nayak R.R., Pradhan N., Behera D., Pradhan K.M., Mishra S., Sukla L.B., Mishra B.K. Green Synthesis of Silver Nanoparticle by Penicillium Purpurogenum NPMF: The Process and Optimization. J. Nanoparticle Res. 2011;13:3129–3137. doi: 10.1007/s11051-010-0208-8. DOI

Pradhan N., Nayak R.R., Pradhan A.K., Sukla L.B., Mishra B.K. In Situ Synthesis of Entrapped Silver Nanoparticles by a Fungus-Penicillium Purpurogenum. Nanosci. Nanotechnol. Lett. 2011;3:659–665. doi: 10.1166/nnl.2011.1235. DOI

Taha Z.K., Hawar S.N., Sulaiman G.M. Extracellular Biosynthesis of Silver Nanoparticles from Penicillium Italicum and Its Antioxidant, Antimicrobial and Cytotoxicity Activities. Biotechnol. Lett. 2019;41:899–914. doi: 10.1007/s10529-019-02699-x. PubMed DOI

Honary S., Barabadi H., Gharaei-Fathabad E., Naghibi F. Green Synthesis of Copper Oxide Nanoparticles Using Penicillium Aurantiogriseum, Penicillium Citrinum and Penicillium Waksmanii. Dig. J. Nanomater. Biostruct. 2012;7:999–1005.

Barabadi H., Honary S., Ali Mohammadi M., Ahmadpour E., Rahimi M.T., Alizadeh A., Naghibi F., Saravanan M. Green Chemical Synthesis of Gold Nanoparticles by Using Penicillium Aculeatum and Their Scolicidal Activity against Hydatid Cyst Protoscolices of Echinococcus Granulosus. Environ. Sci. Pollut. Res. 2017;24:5800–5810. doi: 10.1007/s11356-016-8291-8. PubMed DOI

Mishra A., Tripathy S.K., Wahab R., Jeong S.H., Hwang I., Yang Y.B., Kim Y.S., Shin H.S., Yun S.I. Microbial Synthesis of Gold Nanoparticles Using the Fungus Penicillium Brevicompactum and Their Cytotoxic Effects against Mouse Mayo Blast Cancer C 2C 12 Cells. Appl. Microbiol. Biotechnol. 2011;92:617–630. doi: 10.1007/s00253-011-3556-0. PubMed DOI

Golnaraghi Ghomi A.R., Mohammadi-Khanaposhti M., Vahidi H., Kobarfard F., Ameri Shah Reza M., Barabadi H. Fungus-Mediated Extracellular Biosynthesis and Characterization of Zirconium Nanoparticles Using Standard Penicillium Species and Their Preliminary Bactericidal Potential: A Novel Biological Approach to Nanoparticle Synthesis. Iran. J. Pharm. Res. 2019;18:2101–2110. doi: 10.22037/ijpr.2019.112382.13722. PubMed DOI PMC

Alghuthaymi M.A., Abd-Elsalam K.A., AboDalam H.M., Ahmed F.K., Ravichandran M., Kalia A., Rai M. Trichoderma: An Eco-Friendly Source of Nanomaterials for Sustainable Agroecosystems. J. Fungi. 2022;8:367. doi: 10.3390/jof8040367. PubMed DOI PMC

Mukherjee P., Roy M., Mandal B.P., Dey G.K., Mukherjee P.K., Ghatak J., Tyagi A.K., Kale S.P. Green Synthesis of Highly Stabilized Nanocrystalline Silver Particles by a Non-Pathogenic and Agriculturally Important Fungus T. Asperellum. Nanotechnology. 2008;19:075103. doi: 10.1088/0957-4484/19/7/075103. PubMed DOI

Devi T.P., Kulanthaivel S., Kamil D., Borah J.L., Prabhakaran N., Srinivasa N. Biosynthesis of Silver Nanoparticles from Trichoderma Species. Indian J. Exp. Biol. 2013;51:543–547. PubMed

Ahluwalia V., Kumar J., Sisodia R., Shakil N.A., Walia S. Green Synthesis of Silver Nanoparticles by Trichoderma Harzianum and Their Bio-Efficacy Evaluation against Staphylococcus Aureus and Klebsiella Pneumonia. Ind. Crops Prod. 2014;55:202–206. doi: 10.1016/j.indcrop.2014.01.026. DOI

Vahabi K., Mansoori G.A., Karimi S. Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs) Insciences J. 2011;1:65–79. doi: 10.5640/insc.010165. DOI

Gemishev O.T., Panayotova M.I., Mintcheva N.N., Djerahov L.P., Tyuliev G.T., Gicheva G.D. A Green Approach for Silver Nanoparticles Preparation by Cell-Free Extract from Trichoderma Reesei Fungi and Their Characterization. Mater. Res. Express. 2019;6:95040. doi: 10.1088/2053-1591/ab2e6a. DOI

Bilesky-José N., Maruyama C., Germano-Costa T., Campos E., Carvalho L., Grillo R., Fraceto L.F., de Lima R. Biogenic α-Fe2O3 Nanoparticles Enhance the Biological Activity of Trichoderma against the Plant Pathogen Sclerotinia Sclerotiorum. ACS Sustain. Chem. Eng. 2021;9:1669–1683. doi: 10.1021/acssuschemeng.0c07349. DOI

Consolo V.F., Torres-Nicolini A., Alvarez V.A. Mycosinthetized Ag, CuO and ZnO Nanoparticles from a Promising Trichoderma Harzianum Strain and Their Antifungal Potential against Important Phytopathogens. Sci. Rep. 2020;10:20499. doi: 10.1038/s41598-020-77294-6. PubMed DOI PMC

Saravanakumar K., Jeevithan E., Hu X., Chelliah R., Oh D.H., Wang M.H. Enhanced Anti-Lung Carcinoma and Anti-Biofilm Activity of Fungal Molecules Mediated Biogenic Zinc Oxide Nanoparticles Conjugated with β-D-Glucan from Barley. J. Photochem. Photobiol. B. 2020;203:111728. doi: 10.1016/j.jphotobiol.2019.111728. PubMed DOI

Natesan K., Ponmurugan P., Gnanamangai B.M., Manigandan V., Joy S.P.J., Jayakumar C., Amsaveni G. Biosynthesis of Silica and Copper Nanoparticles from Trichoderma, Streptomyces and Pseudomonas Spp. Evaluated against Collar Canker and Red Root-Rot Disease of Tea Plants. Arch. Phytopathol. Plant Prot. 2021;54:56–85. doi: 10.1080/03235408.2020.1817258. DOI

Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Parishcha R., Ajaykumar P.V., Alam M., Kumar R., et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001;1:515–519. doi: 10.1021/nl0155274. DOI

Gericke M., Pinches A. Biological Synthesis of Metal Nanoparticles. Hydrometallurgy. 2006;83:132–140. doi: 10.1016/j.hydromet.2006.03.019. DOI

Apte M., Sambre D., Gaikawad S., Joshi S., Bankar A., Kumar A.R., Zinjarde S. Psychrotrophic Yeast Yarrowia Lipolytica NCYC 789 Mediates the Synthesis of Antimicrobial Silver Nanoparticles via Cell-Associated Melanin. AMB Express. 2013;3:32. doi: 10.1186/2191-0855-3-32. PubMed DOI PMC

Waghmare S.R., Mulla M.N., Marathe S.R., Sonawane K.D. Ecofriendly Production of Silver Nanoparticles Using Candida Utilis and Its Mechanistic Action against Pathogenic Microorganisms. 3 Biotech. 2015;5:33–38. doi: 10.1007/s13205-014-0196-y. PubMed DOI PMC

Eugenio M., Müller N., Frasés S., Almeida-Paes R., Lima L.M.T.R., Lemgruber L., Farina M., de Souza W., Sant’Anna C. Yeast-Derived Biosynthesis of Silver/Silver Chloride Nanoparticles and Their Antiproliferative Activity against Bacteria. RSC Adv. 2016;6:9893–9904. doi: 10.1039/C5RA22727E. DOI

Jalal M., Ansari M., Alzohairy M., Ali S., Khan H., Almatroudi A., Raees K. Biosynthesis of Silver Nanoparticles from Oropharyngeal Candida Glabrata Isolates and Their Antimicrobial Activity against Clinical Strains of Bacteria and Fungi. Nanomaterials. 2018;8:586. doi: 10.3390/nano8080586. PubMed DOI PMC

Elahian F., Reiisi S., Shahidi A., Mirzaei S.A. High-Throughput Bioaccumulation, Biotransformation, and Production of Silver and Selenium Nanoparticles Using Genetically Engineered Pichia Pastoris. Nanomedicine. 2017;13:853–861. doi: 10.1016/j.nano.2016.10.009. PubMed DOI

Devi L.S., Joshi S.R. Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya. Mycobiology. 2012;40:27–34. doi: 10.5941/MYCO.2012.40.1.027. PubMed DOI PMC

Suchitra D., Nageswara Rao AB N., Ravindranath A., Sakunthala Madhavendra S., Jayathirtha Rao V. Silver Nanoparticle Synthesis from Lecanicillium Lecanii and Evalutionary Treatment on Cotton Fabrics by Measuring Their Improved Antibacterial Activity with Antibiotics against Staphylococcus Aureus (ATCC 29213) and E. Coli (ATCC 25922) Strains. Int. J. Pharm. Pharm. Sci. 2011;3:190–195.

Niknejad F., Nabili M., Daie Ghazvini R., Moazeni M. Green Synthesis of Silver Nanoparticles: Advantages of the Yeast Saccharomyces Cerevisiae Model. Curr. Med. Mycol. 2015;1:17–24. doi: 10.18869/acadpub.cmm.1.3.17. PubMed DOI PMC

Salunke B.K., Sawant S.S., Lee S.-I., Kim B.S. Comparative Study of MnO2 Nanoparticle Synthesis by Marine Bacterium Saccharophagus Degradans and Yeast Saccharomyces Cerevisiae. Appl. Microbiol. Biotechnol. 2015;99:5419–5427. doi: 10.1007/s00253-015-6559-4. PubMed DOI

Zhang X., Qu Y., Shen W., Wang J., Li H., Zhang Z., Li S., Zhou J. Biogenic Synthesis of Gold Nanoparticles by Yeast Magnusiomyces Ingens LH-F1 for Catalytic Reduction of Nitrophenols. Colloids Surf. A Physicochem Eng. Asp. 2016;497:280–285. doi: 10.1016/j.colsurfa.2016.02.033. DOI

Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S.K., Paknikar K.M. Microbial Synthesis of Semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an Ideal Diode. Biotechnol. Bioeng. 2002;78:583–588. doi: 10.1002/bit.10233. PubMed DOI

Dameron C.T., Reese R.N., Mehra R.K., Kortan A.R., Carroll P.J., Steigerwald M.L., Brus L.E., Winge D.R. Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites. Nature. 1989;338:596–597. doi: 10.1038/338596a0. DOI

Birla S.S., Tiwari V.V., Gade A.K., Ingle A.P., Yadav A.P., Rai M.K. Fabrication of Silver Nanoparticles by Phoma Glomerata and Its Combined Effect against Escherichia Coli, Pseudomonas Aeruginosa and Staphylococcus Aureus. Lett. Appl. Microbiol. 2009;48:173–179. doi: 10.1111/j.1472-765X.2008.02510.x. PubMed DOI

Rai M., Ingle A.P., Gade A.K., Duarte M.C.T., Duran N. Three Phoma Spp. Synthesised Novel Silver Nanoparticles That Possess Excellent Antimicrobial Efficacy. IET Nanobiotechnol. 2015;9:280–287. doi: 10.1049/iet-nbt.2014.0068. PubMed DOI

Banu A.N., Balasubramanian C. Myco-Synthesis of Silver Nanoparticles Using Beauveria Bassiana against Dengue Vector, Aedes Aegypti (Diptera: Culicidae) Parasitol. Res. 2014;113:2869–2877. doi: 10.1007/s00436-014-3948-z. PubMed DOI

Bhat R., Ganachari S., Deshpande R., Bedre M., Abbaraju V. Biosynthesis and Characterization of Silver Nanoparticles Using Extract of Fungi Acremonium Diospyri. Int. J. Sci. Res. Conf. Proc. 2012;1:314–316.

Raheman F., Deshmukh S., Ingle A., Gade A., Rai M. Silver Nanoparticles: Novel Antimicrobial Agent Synthesized from an Endophytic Fungus Pestalotia Sp. Isolated from Leaves of Syzygium Cumini (L) Nano Biomed. Eng. 2011;3:174–178. doi: 10.5101/nbe.v3i3.p174-178. DOI

Balaji D.S., Basavaraja S., Deshpande R., Mahesh D.B., Prabhakar B.K., Venkataraman A. Extracellular Biosynthesis of Functionalized Silver Nanoparticles by Strains of Cladosporium Cladosporioides Fungus. Colloids Surf. B Biointerfaces. 2009;68:88–92. doi: 10.1016/j.colsurfb.2008.09.022. PubMed DOI

Chandankere R., Chelliah J., Subban K., Shanadrahalli V.C., Parvez A., Zabed H.M., Sharma Y.C., Qi X. Pleiotropic Functions and Biological Potentials of Silver Nanoparticles Synthesized by an Endophytic Fungus. Front. Bioeng. Biotechnol. 2020;8:00095. doi: 10.3389/fbioe.2020.00095. PubMed DOI PMC

Hamedi S., Shojaosadati S.A., Shokrollahzadeh S., Hashemi-Najafabadi S. Extracellular Biosynthesis of Silver Nanoparticles Using a Novel and Non-Pathogenic Fungus, Neurospora Intermedia: Controlled Synthesis and Antibacterial Activity. World J. Microbiol. Biotechnol. 2014;30:693–704. doi: 10.1007/s11274-013-1417-y. PubMed DOI

Qian Y., Yu H., He D., Yang H., Wang W., Wan X., Wang L. Biosynthesis of Silver Nanoparticles by the Endophytic Fungus Epicoccum Nigrum and Their Activity against Pathogenic Fungi. Bioprocess Biosyst. Eng. 2013;36:1613–1619. doi: 10.1007/s00449-013-0937-z. PubMed DOI

Saha S., Sarkar J., Chattopadhyay D., Patra S., Chakraborty A., Acharya K. Production Of Silver Nanoparticles By A Phytopathogenic Fungus Bipolaris Nodulosa And Its Antimicrobial Activity. Dig. J. Nanomater. Biostruct. 2010;5:887–895.

Castro-Longoria E., Vilchis-Nestor A.R., Avalos-Borja M. Biosynthesis of Silver, Gold and Bimetallic Nanoparticles Using the Filamentous Fungus Neurospora Crassa. Colloids Surf. B Biointerfaces. 2011;83:42–48. doi: 10.1016/j.colsurfb.2010.10.035. PubMed DOI

Bhargava A., Jain N., Khan M.A., Pareek V., Dilip R.V., Panwar J. Utilizing Metal Tolerance Potential of Soil Fungus for Efficient Synthesis of Gold Nanoparticles with Superior Catalytic Activity for Degradation of Rhodamine B. J. Environ. Manag. 2016;183:22–32. doi: 10.1016/j.jenvman.2016.08.021. PubMed DOI

Castro-Longoria E., Moreno-Velasquez S.D., Moreno-Velasquez S.D., Arenas-Berumen E. Production of Platinum Nanoparticles and Nanoaggregates Using Neurospora Crassa. J. Microbiol. Biotechnol. 2012;22:1000–1004. doi: 10.4014/jmb.1110.10085. PubMed DOI

Li Q., Gadd G.M. Biosynthesis of Copper Carbonate Nanoparticles by Ureolytic Fungi. Appl. Microbiol. Biotechnol. 2017;101:7397–7407. doi: 10.1007/s00253-017-8451-x. PubMed DOI PMC

Suryavanshi P., Pandit R., Gade A.K., Derita M.G., Zachino S.A., Rai M. Colletotrichum Sp.- Mediated Synthesis of Sulphur and Aluminium Oxide Nanoparticles and Its in Vitro Activity against Selected Food-Borne Pathogens. Lwt-Food Sci. Technol. 2017;81:188–194. doi: 10.1016/j.lwt.2017.03.038. DOI

Berger R.G., Bordewick S., Krahe N.-K., Ersoy F. Mycelium vs. Fruiting Bodies of Edible Fungi—A Comparison of Metabolites. Microorganisms. 2022;10:1379. doi: 10.3390/microorganisms10071379. PubMed DOI PMC

Chaturvedi V.K., Yadav N., Rai N.K., Ellah N.H.A., Bohara R.A., Rehan I.F., Marraiki N., Batiha G.E.-S., Hetta H.F., Singh M.P. Pleurotus Sajor-Caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics. Molecules. 2020;25:3091. doi: 10.3390/molecules25133091. PubMed DOI PMC

Rabeea M.A., Owaid M.N., Aziz A.A., Jameel M.S., Dheyab M.A. Mycosynthesis of Gold Nanoparticles Using the Extract of Flammulina Velutipes, Physalacriaceae, and Their Efficacy for Decolorization of Methylene Blue. J. Environ. Chem. Eng. 2020;8:103841. doi: 10.1016/j.jece.2020.103841. DOI

El-Ramady H., Abdalla N., Fawzy Z., Badgar K., Llanaj X., Törős G., Hajdú P., Eid Y., Prokisch J. Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation. Sustainability. 2022;14:3667. doi: 10.3390/su14063667. DOI

Ghahremani-Majd H., Dashti F. Chemical Composition and Antioxidant Properties of Cultivated Button Mushrooms (Agaricus bisporus) Hortic. Environ. Biotechnol. 2015;56:376–382. doi: 10.1007/s13580-015-0124-z. DOI

Vetchinkina E., Loshchinina E., Kupryashina M., Burov A., Pylaev T., Nikitina V. Green Synthesis of Nanoparticles with Extracellular and Intracellular Extracts of Basidiomycetes. PeerJ. 2018;6:e5237. doi: 10.7717/peerj.5237. PubMed DOI PMC

Owaid M.N., Naeem G.A., Muslim R.F., Oleiwi R.S. Synthesis, Characterization and Antitumor Efficacy of Silver Nanoparticle from Agaricus Bisporus Pileus, Basidiomycota. Walailak J. Sci. Technol. (WJST) 2018;17:75–87. doi: 10.48048/wjst.2020.5840. DOI

Mohana S., Sumathi S. Multi-Functional Biological Effects of Palladium Nanoparticles Synthesized Using Agaricus Bisporus. J. Clust. Sci. 2020;31:391–400. doi: 10.1007/s10876-019-01652-2. DOI

Naeem G.A., Jaloot A.S., Owaid M.N., Muslim R.F. Green Synthesis of Gold Nanoparticles from Coprinus Comatus, Agaricaceae, and the Effect of Ultraviolet Irradiation on Their Characteristics. Walailak J. Sci. Technol. (WJST) 2021;18:9396. doi: 10.48048/wjst.2021.9396. DOI

Dandapat S., Kumar M., Ranjan R., Sinha M.P. Ganoderma Applanatum Extract Mediated Synthesis of Silver Nanoparticles. Braz. J. Pharm. Sci. 2022;58:e19173. doi: 10.1590/s2175-97902022e19173. DOI

Sedefoglu N., Zalaoglu Y., Bozok F. Green Synthesized ZnO Nanoparticles Using Ganoderma Lucidum: Characterization and In Vitro Nanofertilizer Effects. J. Alloys Compd. 2022;918:165695. doi: 10.1016/j.jallcom.2022.165695. DOI

Manimaran K., Murugesan S., Ragavendran C., Balasubramani G., Natarajan D., Ganesan A., Seedevi P. Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus Djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect. J. Clust. Sci. 2021;32:1229–1240. doi: 10.1007/s10876-020-01888-3. DOI

Khan A.U., Malik N., Khan M., Cho M.H., Khan M.M. Fungi-Assisted Silver Nanoparticle Synthesis and Their Applications. Bioprocess. Biosyst. Eng. 2018;41:1–20. doi: 10.1007/s00449-017-1846-3. PubMed DOI

Naraian R., Abhishek A.K.B. Green Synthesis and Characterization of Silver NPs Using Oyster Mushroom Extract For Antibacterial Efficacy. J. Chem. Environ. Sci. Its Appl. 2020;7:13–18. doi: 10.15415/jce.2020.71003. DOI

Bhardwaj K., Sharma A., Tejwan N., Bhardwaj S., Bhardwaj P., Nepovimova E., Shami A., Kalia A., Kumar A., Abd-Elsalam K.A., et al. Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review. J. Fungi. 2020;6:351. doi: 10.3390/jof6040351. PubMed DOI PMC

Bhat R., Deshpande R., Ganachari S.V., Huh D.S., Venkataraman A. Photo-Irradiated Biosynthesis of Silver Nanoparticles Using Edible Mushroom Pleurotus Florida and Their Antibacterial Activity Studies. Bioinorg. Chem. Appl. 2011;2011:650979. doi: 10.1155/2011/650979. PubMed DOI PMC

Manimaran K., Balasubramani G., Ragavendran C., Natarajan D., Murugesan S. Biological Applications of Synthesized ZnO Nanoparticles Using Pleurotus Djamor Against Mosquito Larvicidal, Histopathology, Antibacterial, Antioxidant and Anticancer Effect. J. Clust. Sci. 2021;32:1635–1647. doi: 10.1007/s10876-020-01927-z. DOI

Sarkar J., Kalyan Roy S., Laskar A., Chattopadhyay D., Acharya K. Bioreduction of Chloroaurate Ions to Gold Nanoparticles by Culture Filtrate of Pleurotus Sapidus Quél. Mater. Lett. 2013;92:313–316. doi: 10.1016/j.matlet.2012.10.130. DOI

Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Cruz-Martins N., Dhanjal D.S., Singh R., Chopra C., Verma R., Abd-Elsalam K.A., et al. Potential Usage of Edible Mushrooms and Their Residues to Retrieve Valuable Supplies for Industrial Applications. J. Fungi. 2021;7:427. doi: 10.3390/jof7060427. PubMed DOI PMC

Eskandari-Nojedehi M., Jafarizadeh-Malmiri H., Rahbar-Shahrouzi J. Hydrothermal Green Synthesis of Gold Nanoparticles Using Mushroom (Agaricus Bisporus) Extract: Physico-Chemical Characteristics and Antifungal Activity Studies. Green Process. Synth. 2018;7:38–47. doi: 10.1515/gps-2017-0004. DOI

Loshchinina E.A., Vetchinkina E.P., Kupryashina M.A., Kursky V.F., Nikitina V.E. Nanoparticles Synthesis by Agaricus Soil Basidiomycetes. J. Biosci. Bioeng. 2018;126:44–52. doi: 10.1016/j.jbiosc.2018.02.002. PubMed DOI

Chopra H., Bibi S., Singh I., Hasan M.M., Khan M.S., Yousafi Q., Baig A.A., Rahman M.M., Islam F., bin Emran T., et al. Green Metallic Nanoparticles: Biosynthesis to Applications. Front. Bioeng. Biotechnol. 2022;10 doi: 10.3389/fbioe.2022.874742. PubMed DOI PMC

Poudel M., Pokharel R., Sudip K.C., Awal S., Pradhananga R. Biosynthesis of Silver Nanoparticles Using Ganoderma Lucidum and Assessment of Antioxidant and Antibacterial Activity. Int. J. Appl. Sci. Biotechnol. 2017;5:523. doi: 10.3126/ijasbt.v5i4.18776. DOI

Nguyen V.P., le Trung H., Nguyen T.H., Hoang D., Tran T.H. Synthesis of Biogenic Silver Nanoparticles with Eco-Friendly Processes Using Ganoderma Lucidum Extract and Evaluation of Their Theranostic Applications. J. Nanomater. 2021;2021:6135920. doi: 10.1155/2021/6135920. DOI

Gurunathan S., Raman J., Abd Malek S.N., John P., Sabaratnam V. Green Synthesis of Silver Nanoparticles Using Ganoderma Neo-Japonicum Imazeki: A Potential Cytotoxic Agent against Breast Cancer Cells. Int. J. Nanomed. 2013;8:4399–4413. doi: 10.2147/IJN.S51881. PubMed DOI PMC

Murillo-Rábago E.I., Vilchis-Nestor A.R., Juarez-Moreno K., Garcia-Marin L.E., Quester K., Castro-Longoria E. Optimized Synthesis of Small and Stable Silver Nanoparticles Using Intracellular and Extracellular Components of Fungi: An Alternative for Bacterial Inhibition. Antibiotics. 2022;11:800. doi: 10.3390/antibiotics11060800. PubMed DOI PMC

Nguyen V.P., le Trung H., Nguyen T.H., Hoang D., Tran T.H. Advancement of Microwave-Assisted Biosynthesis for Preparing Au Nanoparticles Using Ganoderma Lucidum Extract and Evaluation of Their Catalytic Reduction of 4-Nitrophenol. ACS Omega. 2021;6:32198–32207. doi: 10.1021/acsomega.1c05033. PubMed DOI PMC

Clarance P., Luvankar B., Sales J., Khusro A., Agastian P., Tack J.-C., Al Khulaifi M.M., AL-Shwaiman H.A., Elgorban A.M., Syed A., et al. Green Synthesis and Characterization of Gold Nanoparticles Using Endophytic Fungi Fusarium Solani and Its In-Vitro Anticancer and Biomedical Applications. Saudi J. Biol. Sci. 2020;27:706–712. doi: 10.1016/j.sjbs.2019.12.026. PubMed DOI PMC

Arun G., Eyini M., Gunasekaran P. Green Synthesis of Silver Nanoparticles Using the Mushroom Fungus Schizophyllum Commune and Its Biomedical Applications. Biotechnol. Bioprocess Eng. 2014;19:1083–1090. doi: 10.1007/s12257-014-0071-z. DOI

Balakumaran M.D., Ramachandran R., Kalaichelvan P.T. Exploitation of Endophytic Fungus, Guignardia Mangiferae for Extracellular Synthesis of Silver Nanoparticles and Their in Vitro Biological Activities. Microbiol. Res. 2015;178:9–17. doi: 10.1016/j.micres.2015.05.009. PubMed DOI

Husseiny S.M., Salah T.A., Anter H.A. Biosynthesis of Size Controlled Silver Nanoparticles by Fusarium Oxysporum, Their Antibacterial and Antitumor Activities. Beni. Suef. Univ. J. Basic. Appl. Sci. 2015;4:225–231. doi: 10.1016/j.bjbas.2015.07.004. DOI

Guilger-Casagrande M., de Lima R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019;7:287. doi: 10.3389/fbioe.2019.00287. PubMed DOI PMC

Durán N., Marcato P.D., De Souza G.I.H., Alves O.L., Esposito E. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. J. Biomed. Nanotechnol. 2007;3:203–208. doi: 10.1166/jbn.2007.022. DOI

Srivastava S., Bhargava A., Pathak N., Srivastava P. Production, Characterization and Antibacterial Activity of Silver Nanoparticles Produced by Fusarium Oxysporum and Monitoring of Protein-Ligand Interaction through in-Silico Approaches. Microb. Pathog. 2019;129:136–145. doi: 10.1016/j.micpath.2019.02.013. PubMed DOI

Elegbede J.A., Lateef A., Azeez M.A., Asafa T.B., Yekeen T.A., Oladipo I.C., Adebayo E.A., Beukes L.S., Gueguim-Kana E.B. Fungal Xylanases-Mediated Synthesis of Silver Nanoparticles for Catalytic and Biomedical Applications. IET Nanobiotechnol. 2018;12:857–863. doi: 10.1049/iet-nbt.2017.0299. PubMed DOI PMC

Fatima F., Wahid I. Eco-Friendly Synthesis of Silver and Copper Nanoparticles by Shizophyllum Commune Fungus and Its Biomedical Applications. Int. J. Environ. Sci. Technol. 2021;19:7915–7926. doi: 10.1007/s13762-021-03517-6. DOI

Khan M., Khan A.U., Rafatullah M., Alam M., Bogdanchikova N., Garibo D. Search for Effective Approaches to Fight Microorganisms Causing High Losses in Agriculture: Application of P. Lilacinum Metabolites and Mycosynthesised Silver Nanoparticles. Biomolecules. 2022;12:174. doi: 10.3390/biom12020174. PubMed DOI PMC

Kumar A., Kumar S., Kiran K., Banerjee S., Pande V., Dandapat A. Myco-Nanotechnological Approach to Synthesize Silver Oxide Nanocuboids Using Endophytic Fungus Isolated from Citrus Pseudolimon Plant. Colloids Surf B Biointerfaces. 2021;206:111948. doi: 10.1016/j.colsurfb.2021.111948. PubMed DOI

Islam S.N., Raza A., Naqvi S.M.A., Parveen S., Ahmad A. Unveiling the Antisporulant Activity of Mycosynthesized Gold-Selenide Nanoparticles against Black Fungus Aspergillus Niger. Surf. Interfaces. 2022;29:101769. doi: 10.1016/j.surfin.2022.101769. DOI

Sharma J.L., Dhayal V., Sharma R.K. White-Rot Fungus Mediated Green Synthesis of Zinc Oxide Nanoparticles and Their Impregnation on Cellulose to Develop Environmental Friendly Antimicrobial Fibers. 3 Biotech. 2021;11:269. doi: 10.1007/s13205-021-02840-6. PubMed DOI PMC

Win T.T., Khan S., Fu P. Fungus- (Alternaria Sp.) Mediated Silver Nanoparticles Synthesis, Characterization, and Screening of Antifungal Activity against Some Phytopathogens. J. Nanotechnol. 2020;2020:8828878. doi: 10.1155/2020/8828878. DOI

Wang D., Xue B., Wang L., Zhang Y., Liu L., Zhou Y. Fungus-Mediated Green Synthesis of Nano-Silver Using Aspergillus Sydowii and Its Antifungal/Antiproliferative Activities. Sci. Rep. 2021;11:10356. doi: 10.1038/s41598-021-89854-5. PubMed DOI PMC

Thakor R., Mistry H., Patel H., Jhala D., Parmar N., Bariya H. Biogenic Synthesis of Silver Nanoparticles Mediated by the Consortium Comprising the Marine Fungal Filtrates of Penicillium Oxalicum and Fusarium Hainanense along with Their Antimicrobial, Antioxidant, Larvicidal and Anticancer Potency. J. Appl. Microbiol. 2022;133:857–869. doi: 10.1111/jam.15611. PubMed DOI

Sumanth B., Lakshmeesha T.R., Ansari M.A., Alzohairy M.A., Udayashankar A.C., Shobha B., Niranjana S.R., Srinivas C., Almatroudi A. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from <em>Xylaria Acuta</Em> and Its Nanoantibiotic Potential. Int. J. Nanomed. 2020;15:8519–8536. doi: 10.2147/IJN.S271743. PubMed DOI PMC

Gajbhiye M., Kesharwani J., Ingle A., Gade A., Rai M. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Activity against Pathogenic Fungi in Combination with Fluconazole. Nanomedicine. 2009;5:382–386. doi: 10.1016/j.nano.2009.06.005. PubMed DOI

Gaikwad S., Ingle A., Gade A., Rai M., Falanga A., Incoronato N., Russo L., Galdiero S., Galdiero M. Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3. Int. J. Nanomed. 2013;8:4303–4314. doi: 10.2147/IJN.S50070. PubMed DOI PMC

Pei X., Qu Y., Shen W., Li H., Zhang X., Li S., Zhang Z., Li X. Green Synthesis of Gold Nanoparticles Using Fungus Mariannaea Sp. HJ and Their Catalysis in Reduction of 4-Nitrophenol. Environ. Sci. Pollut. Res. 2017;24:21649–21659. doi: 10.1007/s11356-017-9684-z. PubMed DOI

Qu Y., Li X., Lian S., Dai C., Jv Z., Zhao B., Zhou H. Biosynthesis of Gold Nanoparticles Using Fungus Trichoderma Sp. WL-Go and Their Catalysis in Degradation of Aromatic Pollutants. IET Nanobiotechnol. 2019;13:12–17. doi: 10.1049/iet-nbt.2018.5177. PubMed DOI PMC

Jacob J.M., Rajan R., Tom T.C., Kumar V.S., Kurup G.G., Shanmuganathan R., Pugazhendhi A. Biogenic Design of ZnS Quantum Dots—Insights into Their in-Vitro Cytotoxicity, Photocatalysis and Biosensing Properties. Ceram. Int. 2019;45:24193–24201. doi: 10.1016/j.ceramint.2019.08.128. DOI

Priyanka U., Gowda K.M.A., Elisha M.G., Teja B.S., Nitish N., Mohan B.R. Biologically Synthesized PbS Nanoparticles for the Detection of Arsenic in Water. Int. Biodeterior. Biodegrad. 2017;119:78–86. doi: 10.1016/J.IBIOD.2016.10.009. DOI

Prakash S., Singh G., Soni N., Sharma S. Pathogenicity of Fusarium Oxysporum against the Larvae of Culex Quinquefasciatus (Say) and Anopheles Stephensi (Liston) in Laboratory. Parasitol. Res. 2010;107:651–655. doi: 10.1007/s00436-010-1911-1. PubMed DOI

Soni N., Prakash S. Effect of Chrysosporium Keratinophilum Metabolites against Culex Quinquefasciatus after Chromatographic Purification. Parasitol. Res. 2010;107:1329–1336. doi: 10.1007/s00436-010-2003-y. PubMed DOI

Raliya R., Tarafdar J.C., Biswas P. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi. J. Agric. Food Chem. 2016;64:3111–3118. doi: 10.1021/acs.jafc.5b05224. PubMed DOI

Shobha B., Lakshmeesha T.R., Ansari M.A., Almatroudi A., Alzohairy M.A., Basavaraju S., Alurappa R., Niranjana S.R., Chowdappa S. Mycosynthesis of ZnO Nanoparticles Using Trichoderma Spp. Isolated from Rhizosphere Soils and Its Synergistic Antibacterial Effect against Xanthomonas Oryzae Pv. Oryzae. J. Fungi. 2020;6:181. doi: 10.3390/jof6030181. PubMed DOI PMC

Zaki S.A., Ouf S.A., Albarakaty F.M., Habeb M.M., Aly A.A., Abd-Elsalam K.A. Trichoderma Harzianum-Mediated ZnO Nanoparticles: A Green Tool for Controlling Soil-Borne Pathogens in Cotton. J. Fungi. 2021;7:952. doi: 10.3390/jof7110952. PubMed DOI PMC

Elgorban A.M., Aref S.M., Seham S.M., Elhindi K.M., Bahkali A.H., Sayed S.R., Manal M.A. Extracellular Synthesis of Silver Nanoparticles Using Aspergillus Versicolor and Evaluation of Their Activity on Plant Pathogenic Fungi. Mycosphere. 2016;7:844–852. doi: 10.5943/mycosphere/7/6/15. DOI

El-Aziz A.R.M., Al-Othman M.R., Mahmoud M., Metwaly H.A. Biosynthesis of Silver Nanoparticles Using Fusarium Solani and Its Impact on Grain Borne Fungi. Dig. J. Nanomater. Biostruct. 2015;10:655–662.

Gherbawy Y.A., Shalaby I.M., El-Sadek M.S.A., Elhariry H.M., Abdelilah B.A. The Anti-Fasciolasis Properties of Silver Nanoparticles Produced by Trichoderma Harzianum and Their Improvement of the Anti-Fasciolasis Drug Triclabendazole. Int. J. Mol. Sci. 2013;14:21887–21898. doi: 10.3390/ijms141121887. PubMed DOI PMC

Guilger-Casagrande M., Germano-Costa T., Pasquoto-Stigliani T., Fraceto L.F., de Lima R. Biosynthesis of Silver Nanoparticles Employing Trichoderma Harzianum with Enzymatic Stimulation for the Control of Sclerotinia Sclerotiorum. Sci. Rep. 2019;9:14351. doi: 10.1038/s41598-019-50871-0. PubMed DOI PMC

Sawake M.M., Moharil M.P., Ingle Y.V., Jadhav P.V., Ingle A.P., Khelurkar V.C., Paithankar D.H., Bathe G.A., Gade A.K. Management of Phytophthora Parasitica Causing Gummosis in Citrus Using Biogenic Copper Oxide Nanoparticles. J. Appl. Microbiol. 2022;132:3142–3154. doi: 10.1111/jam.15472. PubMed DOI

Moon J.-W., Rawn C.J., Rondinone A.J., Love L.J., Roh Y., Everett S.M., Lauf R.J., Phelps T.J. Large-Scale Production of Magnetic Nanoparticles Using Bacterial Fermentation. J. Ind. Microbiol. Biotechnol. 2010;37:1023–1031. doi: 10.1007/s10295-010-0749-y. PubMed DOI

Moon J.-W., Ivanov I.N., Duty C.E., Love L.J., Rondinone A.J., Wang W., Li Y.-L., Madden A.S., Mosher J.J., Hu M.Z., et al. Scalable Economic Extracellular Synthesis of CdS Nanostructured Particles by a Non-Pathogenic Thermophile. J. Ind. Microbiol. Biotechnol. 2013;40:1263–1271. doi: 10.1007/s10295-013-1321-3. PubMed DOI

Moon J.-W., Phelps T.J., Fitzgerald C.L., Jr., Lind R.F., Elkins J.G., Jang G.G., Joshi P.C., Kidder M., Armstrong B.L., Watkins T.R., et al. Manufacturing Demonstration of Microbially Mediated Zinc Sulfide Nanoparticles in Pilot-Plant Scale Reactors. Appl. Microbiol. Biotechnol. 2016;100:7921–7931. doi: 10.1007/s00253-016-7556-y. PubMed DOI

Ramos-Ruiz A., Sesma-Martin J., Sierra-Alvarez R., Field J.A. Continuous Reduction of Tellurite to Recoverable Tellurium Nanoparticles Using an Upflow Anaerobic Sludge Bed (UASB) Reactor. Water Res. 2017;108:189–196. doi: 10.1016/j.watres.2016.10.074. PubMed DOI PMC

Birla S.S., Gaikwad S.C., Gade A.K., Rai M.K. Rapid Synthesis of Silver Nanoparticles from Fusarium Oxysporum by Optimizing Physicocultural Conditions. Sci. World J. 2013;2013:796018. doi: 10.1155/2013/796018. PubMed DOI PMC

Abu-Tahon M.A., Ghareib M., Abdallah W.E. Environmentally Benign Rapid Biosynthesis of Extracellular Gold Nanoparticles Using Aspergillus Flavus and Their Cytotoxic and Catalytic Activities. Process Biochem. 2020;95:1–11. doi: 10.1016/j.procbio.2020.04.015. DOI

Hamedi S., Ghaseminezhad M., Shokrollahzadeh S., Shojaosadati S.A. Controlled Biosynthesis of Silver Nanoparticles Using Nitrate Reductase Enzyme Induction of Filamentous Fungus and Their Antibacterial Evaluation. Artif. Cells Nanomed. Biotechnol. 2017;45:1588–1596. doi: 10.1080/21691401.2016.1267011. PubMed DOI

Eldomany E., Essam T.M., Ahmed A.E., Farghali A. Biosynthesis Physico-Chemical Optimization of Gold Nanoparticles as Anti-Cancer and Synergetic Antimicrobial Activity Using Pleurotus Ostreatus Fungus. J. Appl. Pharm. Sci. 2018;8:119–128. doi: 10.7324/JAPS.2018.8516. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace