Potential Usage of Edible Mushrooms and Their Residues to Retrieve Valuable Supplies for Industrial Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
34071432
PubMed Central
PMC8226799
DOI
10.3390/jof7060427
PII: jof7060427
Knihovny.cz E-zdroje
- Klíčová slova
- edible mushrooms, food products, industrial applications, waste valorization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products. The primary intent of this review is to summarize the information related to edible mushrooms and their valorization in developing value-added products with industrial applications.
Agricultural Research Center Plant Pathology Research Institute Giza 12619 Egypt
Biomedical Research Center University Hospital Hradec Kralove 50005 Hradec Kralove Czech Republic
Faculty of Medicine University of Porto Alameda Prof Hernani Monteiro 4200 319 Porto Portugal
Forest Protection Division Himalayan Forest Research Institute Shimla 171013 India
Institute for Research and Innovation in Health University of Porto 4200 135 Porto Portugal
School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab 144411 India
Zobrazit více v PubMed
Valverde M.E., Hernández-Pérez T., Paredes-López O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015;2015:376387. doi: 10.1155/2015/376387. PubMed DOI PMC
Chang S.T., Miles P.G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008.
Ergönül P.G., Akata I., Kalyoncu F., Ergönül B. Fatty acid compositions of six wild edible mushroom species. Sci. World J. 2013;2013:163964. doi: 10.1155/2013/163964. PubMed DOI PMC
Guillamón E., García-Lafuente A., Lozano M., D’Arrigo M., Rostagno M.A., Villares A., Martínez J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81:715–723. doi: 10.1016/j.fitote.2010.06.005. PubMed DOI
Longvah T., Deosthale Y.G. Composition and nutritional studies on edible wild mushroom from Northeast India. Food Chem. 1998;63:331–334. doi: 10.1016/S0308-8146(98)00026-0. DOI
Maga J.A. Mushroom flavor. J. Agric. Food Chem. 1981;29:1–4. doi: 10.1021/jf00103a001. DOI
Mattila P., Konko K., Euvola M., Pihlava J., Astola J., Vahteristo L. Contents of vitamins, mineral elements and some phenolic compound in cultivated mushrooms. J. Agric. Food Chem. 2001;42:2449–2453. doi: 10.1021/jf00047a016. PubMed DOI
Clifford A.J., Heid M.K., Peerson J.M., Bills N.D. Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay. J. Nutr. 1991;121:445–453. doi: 10.1093/jn/121.4.445. PubMed DOI
Bano Z., Rajarathnam S. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit. Rev. Food Sci. Nutr. 1988;27:87–158. doi: 10.1080/10408398809527480. PubMed DOI
Ribeiroa B., Pinhoa P.G., Andradea P.B., Baptistab P., Valentao P. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchem. J. 2009;93:29–35. doi: 10.1016/j.microc.2009.04.005. DOI
Antunes F., Marçal S., Taofiq O., Morais A.M.M.B., Freitas A.C., Ferreira I.C.F.R., Pintado M. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules. 2020;25:2672. doi: 10.3390/molecules25112672. PubMed DOI PMC
Lim S.-H., Lee Y.-H., Kang H.-W. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology. 2013;41:214–220. doi: 10.5941/MYCO.2013.41.4.214. PubMed DOI PMC
Mirabella N., Castellani V., Sala S. Current options for the valorization of food manufacturing waste: A review. J. Clean Prod. 2014;65:28–41. doi: 10.1016/j.jclepro.2013.10.051. DOI
Soliman A., Abbas M., Ahmed S. Preparation, canning and evaluation process of vegetable mixture diets (ready-to-eat) supplemented with mushroom. Suez Canal Univ. J. Food Sci. 2017;4:19–28. doi: 10.21608/scuj.2017.6654. DOI
Salehi F. Characterization of different mushrooms powder and its application in bakery products: A review. Int. J. Food Prop. 2019;22:1375–1385. doi: 10.1080/10942912.2019.1650765. DOI
Ng S.H., Robert S.D., Ahmad W.A.N.W., Ishak W.R.W. Incorporation of dietary fiber-rich oyster mushroom (Pleurotus sajor-caju) powder improves postprandial glycaemic response by interfering with starch granule structure and starch digestibility of biscuit. Food Chem. 2017;227:358–368. doi: 10.1016/j.foodchem.2017.01.108. PubMed DOI
Rathore H., Sehwag S., Prasad S., Sharma S. Technological, nutritional, functional and sensorial attributes of the cookies fortified with Calocybe indica mushroom. J. Food Meas. Charact. 2019;13:976–987. doi: 10.1007/s11694-018-0012-1. DOI
Wang L., Zhao H., Brennan M., Guan W., Liu J., Wang M., Brennan C. In vitro gastric digestion antioxidant and cellular radical scavenging activities of wheat-shiitake noodles. Food Chem. 2020;330:127214. doi: 10.1016/j.foodchem.2020.127214. PubMed DOI
Prodhan U.K., Linkon K.M.M.R., Al-Amin M.F., Alam M.J. Development and quality evaluation of mushroom (Pleurotus sajor-caju) enriched biscuits. Emir. J. Food Agric. 2015;27:542–547. doi: 10.9755/ejfa.2015.04.082. DOI
Ren A., Pan S., Li W., Chen G., Duan X. Effect of various pretreatments on quality attributes of vacuum-fried shiitake mushroom chips. J. Food Qual. 2018;2018:4510126. doi: 10.1155/2018/4510126. DOI
Farzana T., Mohajan S. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. Food Sci. Nutr. 2015;3:363–369. doi: 10.1002/fsn3.228. PubMed DOI PMC
Kumar K., Ray A.B. Development and shelf-life evaluation of tomato-mushroom mixed ketchup. J. Food Sci. Technol. 2016;53:2236–2243. doi: 10.1007/s13197-016-2179-y. PubMed DOI PMC
Khan M.U., Qazi I.M., Ahmed I., Ullah S., Khan A., Jamal S. Development and quality evaluation of banana mushroom blended jam. Pak. J. Sci. Ind. Res. Ser. B. 2017;60:11–18.
Rachappa P., Sudharma D.C., Chauhan O.P., Patki P.E., Nagaraj R., Naik S., Naik R. Development and evaluation of white button mushroom based snacks. J. Food Process. Technol. 2020;11:824.
Mohajan S., Orchy T.N., Farzana T. Effect of incorporation of soy flour on functional, nutritional, and sensory properties of mushroom–moringa-supplemented healthy soup. Food Sci. Nutr. 2018;6:549–556. doi: 10.1002/fsn3.594. PubMed DOI PMC
Brennan M.A., Derbyshire E., Tiwari B.K., Brennan C.S. Enrichment of extruded snack products with coproducts from chestnut mushroom (Agrocybe aegerita) production: Interactions between dietary fiber, physicochemical characteristics, and glycemic load. J. Agric. Food Chem. 2012;60:4396–4401. doi: 10.1021/jf3008635. PubMed DOI
Bello M., Oluwamukomi M.O., Enujiugha V.N. Nutrient composition and sensory properties of biscuit from mushroom-wheat composite flours. Arch. Curr. Res. Int. 2017;9:1–11. doi: 10.9734/ACRI/2017/35686. DOI
Khider M., Seoudi O., Abdelaliem Y.F. Functional processed cheese spreads with high nutritional value as supplemented with fresh and dried mushrooms. Int. J. Nutr Food Sci. 2017;6:45–52. doi: 10.11648/j.ijnfs.20170601.18. DOI
Cornelia M., Chandra J. Utilization of white oyster mushroom powder (Pleurotus ostreatus (Jacq.) P. Kumm.) in the making of biscuit as emergency food product. Eurasia J. Biosci. 2019;13:1859–1866.
Shalaby S.M., Mohamed A.G., Farahat E.S. Preparation of functional and nutritional spreadable processed cheese fortified with vegetables and mushrooms. Int. J. Curr Res. 2018;10:74075–74082.
Rosli W.I.W., Solihah M.A. Nutritional composition and sensory properties of oyster mushroom-based patties packed with biodegradable packaging. Sains Malays. 2014;43:65–71.
Chauhan N., Vaidya D., Gupta A., Pandit A. Fortification of pasta with white button mushroom: Functional and rheological properties. Int. J. Food Ferment. Technol. 2017;7:87–96. doi: 10.5958/2277-9396.2017.00008.3. DOI
Chaudhari P.D.N., Wandhekar S.S., Shaikh A.A., Devkatte A.N. Preparation and characterization of cookies prepared from wheat flour fortified with mushroom (Pleurotussajor-caju) and spiced with cardamom. Int. J. Res. Anal. Rev. 2018;5:386–389.
Lu X., Brennan M.A., Serventi L., Liu J., Guan W., Brennan C.S. Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem. 2018;264:199–209. doi: 10.1016/j.foodchem.2018.04.130. PubMed DOI
Cha M.H., Heo J.Y., Lee C., Lo Y.M., Moon B. Quality and sensory characterization of white jelly mushroom (Tremella fuciformis) as a meat substitute in pork patty formulation. J. Food Process. Preserv. 2014;38:2014–2019. doi: 10.1111/jfpp.12178. DOI
Arora B., Kamal S., Sharma V.P. Nutritional and quality characteristics of instant noodles supplemented with oyster mushroom (P. ostreatus) J. Food Process Preserv. 2018;42:e13521. doi: 10.1111/jfpp.13521. DOI
Patinho I., Saldaña E., Selani M.M., de Camargo A.C., Merlo T.C., Menegali B.S., Contreras-Castillo C.J. Use of Agaricus bisporus mushroom in beef burgers: Antioxidant, flavor enhancer and fat replacing potential. Food Prod. Process Nutr. 2019;1:1–15. doi: 10.1186/s43014-019-0006-3. DOI
Srivastava A., Attri B., Verma S. Development and evaluation of instant soup premix using oyster mushroom powder. Mushroom Res. 2019;28:65–69. doi: 10.36036/MR.28.1.2019.91960. DOI
Salehi F., Kashaninejad M., Asadi F., Najafi A. Improvement of quality attributes of sponge cake using infrared dried button mushroom. J. Food Sci. Technol. 2016;53:1418–1423. doi: 10.1007/s13197-015-2165-9. PubMed DOI PMC
Kolawole F.L., Akinwande B.A., Ade-Omowaye B.I.O. Physicochemical properties of novel cookies produced from orange-fleshed sweet potato cookies enriched with sclerotium of edible mushroom (Pleurotus tuber-regium) J. Saudi Soc. Agric. Sci. 2020;19:174–178.
Parvin R., Farzana T., Mohajan S., Rahman H., Rahman S.S. Quality improvement of noodles with mushroom fortified and its comparison with local branded noodles. NFS J. 2020;20:37–42. doi: 10.1016/j.nfs.2020.07.002. DOI
Jeong C.H., Shim K.H. Quality characteristics of sponge cakes with addition of Pleurotus eryngii mushroom powders. J. Korean Soc. Food Sci. Nutr. 2004;33:716–722.
Lu X., Brennan M.A., Serventi L., Mason S., Brennan C.S. How the inclusion of mushroom powder can affect the physicochemical characteristics of pasta. Int. J. Food Sci. Technol. 2016;51:2433–2439. doi: 10.1111/ijfs.13246. DOI
Kumar H., Bhardwaj K., Sharma R., Nepovimova E., Kuča K., Dhanjal D.S., Kumar D. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules. 2020;25:2812. doi: 10.3390/molecules25122812. PubMed DOI PMC
Bilbao-Sainz C., Chiou B.-S., Punotai K., Olson D., Williams T., Wood D., Rodov V., Poverenov E., McHugh T. Layer-by-layer alginate and fungal chitosan based edible coatings applied to fruit bars. J. Food Sci. 2018;83:1880–1887. doi: 10.1111/1750-3841.14186. PubMed DOI
Du H., Hu Q., Yang W., Pei F., Kimatu B.M., Ma N., Zhao L. Development, physiochemical characterization and forming mechanism of Flammulina velutipes polysaccharide-based edible films. Carbohydr. Polym. 2016;152:214–221. doi: 10.1016/j.carbpol.2016.07.035. PubMed DOI
Poverenov E., Arnon-Rips H., Zaitsev Y., Bar V., Danay O., Horev B., Rodov V. Potential of chitosan from mushroom waste to enhance quality and storability of fresh-cut melons. Food Chem. 2018;268:233–241. doi: 10.1016/j.foodchem.2018.06.045. PubMed DOI
Zhang K., Wang W., Zhao K., Ma Y., Cheng S., Zhou J., Wu Z. Producing a novel edible film from mushrooms (L. edodes and F. velutipes) by-products with a two-stage treatment namely grinding and bleaching. J. Food Eng. 2020;275:109862. doi: 10.1016/j.jfoodeng.2019.109862. DOI
Olufunmilola O.M., Shian A.J., Dooshima I.B. Effects of plasticizer concentration and mushroom (Pleurotus pulmonarius) flour inclusion on the sensory, mechanical and barrier properties of cassava starch based edible films. Eur. J. Food Sci. Technol. 2019;7:47–62.
Asad F., Anwar H., Yassine H.M., Ullah M.I., Kamran Z., Sohail M.U. White button mushroom, Agaricus bisporus (Agaricomycetes), and a probiotics mixture supplementation correct dyslipidemia without influencing the colon microbiome profile in hypercholesterolemic rats. Int. J. Med. Mushrooms. 2020;22:235–244. doi: 10.1615/IntJMedMushrooms.2020033807. PubMed DOI
Synytsya A., Míčková K., Synytsya A., Jablonský I., Spěváček J., Erban V., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI
Van Doan H., Doolgindachbaporn S., Suksri A. Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880) Fish Physiol. Biochem. 2016;42:1427–1440. doi: 10.1007/s10695-016-0230-6. PubMed DOI
Daneshmand A., Sadeghi G.H., Karimi A., Vaziry A. Effect of oyster mushroom (Pleurotus ostreatus) with and without probiotic on growth performance and some blood parameters of male broilers. Anim. Feed Sci. Techol. 2011;170:91–96. doi: 10.1016/j.anifeedsci.2011.08.008. DOI
Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of probiotic. J. Nutr. 1995;125:1401–1412. doi: 10.1093/jn/125.6.1401. PubMed DOI
Faraki A., Noori N., Gandomi H., Banuree S.A.H., Rahmani F. Effect of Auricularia auricula aqueous extract on survival of Lactobacillus acidophilus La-5 and Bifidobacterium bifidum Bb-12 and on sensorial and functional properties of synbiotic yogurt. Food Sci. Nutr. 2020;8:1254–1263. doi: 10.1002/fsn3.1414. PubMed DOI PMC
Roy D., Fahim A. The effect of different level of mushroom (Agaricus bisporus) and probiotics (Saccharomyces cerevisiae) on sensory evaluation of broiler meat. J. Entomol. Zool. Stud. 2019;7:347–349.
Oyetayo V.O., Oyetayo F.L. Hematological parameters of rats fed mushroom, Pleurotus sajor-caju diets and orogastrically dosed with probiotic Lactobacillus fermentum Ovl. Int. J. Probiotics Prebiotics. 2007;2:39–42.
Van Doan H., Hoseinifar S.H., Dawood M.A., Chitmanat C., Tayyamath K. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus) Fish Shellfish Immunol. 2017;70:87–94. doi: 10.1016/j.fsi.2017.09.002. PubMed DOI
Willis W.L., Isikhuemhen O.S., Ibrahim S.A. Performance assessment of broiler chickens given mushroom extract alone or in combination with probiotics. Poult Sci. 2007;86:1856–1860. doi: 10.1093/ps/86.9.1856. PubMed DOI
Soccol C.R., Vandenberghe L.P.S. Overview of applied solid-state fermentation in Bazil. Biochem. Eng. J. 2008;13:205–218. doi: 10.1016/S1369-703X(02)00133-X. DOI
Zhang R.H., Li X.J., Fadel J.G. Oyster mushroom cultivation with rice and wheat straw. Bioresource Technol. 2002;82:277–284. doi: 10.1016/S0960-8524(01)00188-2. PubMed DOI
Sanchez J.E., Royse D.J. Scytalidium thermophilum- colonized grain, corncobs and chopped wheat straw substrates for the production of Agaricus bisporus. Bioresour. Technol. 2009;100:1670–1674. doi: 10.1016/j.biortech.2008.08.047. PubMed DOI
Semple K.T., Reid B.J., Fermor T.R. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 2001;112:269–283. doi: 10.1016/S0269-7491(00)00099-3. PubMed DOI
Fidanza M.A., Sam fond D.L., Beyen D.M., Aurentz D.J. Analysis of fresh mushroom compost. Hort. Technol. 2010;20:449–453. doi: 10.21273/HORTTECH.20.2.449. DOI
Rajput R., Prasad G., Chopra A.K. Scenario of solid waste management in present Indian context. Casp. J. Environ. Sci. 2009;7:45–53.
Run-Hua Z., Zeng-Qiang D., Zhi-Guo L. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere. 2012;22:333–342.
Medina E., Paredes C., Pérez-Murcia M.D., Bustamante M.A., Moral R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 2009;100:4227–4232. doi: 10.1016/j.biortech.2009.03.055. PubMed DOI
Tam N.V., Wang C.H. Use of spent mushroom substrate and manure compost for honeydew melon seedlings. J. Plant. Growth Regul. 2015;34:417–424.
Wu S., Lan Y., Huang D., Peng Y., Huang Z., Gelbič I., Carballar-Lejarazu R., Guan X., Zhang L., Zou S. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation. J. Econ. Entomol. 2014;107:137–143. doi: 10.1603/EC13276. PubMed DOI
Rajavat A.S., Rai S., Pandiyan K., Kushwaha P., Choudhary P., Kumar M., Chakdar H., Singh A., Karthikeyan N., Bagul S.Y., et al. Sustainable use of the spent mushroom substrate of Pleurotus florida for production of lignocellulolytic enzymes. J. Basic Microbiol. 2020;60:173–184. doi: 10.1002/jobm.201900382. PubMed DOI
Qiao J.J., Zhang Y.F., Sun L.F., Liu W.W., Zhu H.J., Zhang Z. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment. Bioresour. Technol. 2011;102:8046–8051. doi: 10.1016/j.biortech.2011.05.058. PubMed DOI
Singh G., Tiwari A., Rathore H., Prasad S., Hariprasad P., Sharma S. Valorization of paddy straw using de-oiled cakes for P. ostreatus cultivation and utilization of spent mushroom substrate for biopesticide development. Waste Biomass Valroi. 2021;12:333–346. doi: 10.1007/s12649-020-00957-y. DOI
Sendi H., Mohamed M.T.M., Anwar M.P., Saud H.M. Spent mushroom waste as a media replacement for peat moss in kai-lan (Brassica oleracea var. Alboglabra) production. Sci. World J. 2013;2013:258562. doi: 10.1155/2013/258562. PubMed DOI PMC
Liu C.J., Duan Y.L., Jin R.Z., Han Y.Y., Hao J.H., Fan S.X. Spent mushroom substrates as component of growing media for lettuce seedlings; Proceedings of the 4th International Conference on Agricultural and Biological Sciences; Hangzhou, China. 26–29 June 2018; p. 012016.
Antimanon S., Chamkhuy W., Sutthiwattanakul S., Laoteng K. Efficient production of arachidonic acid of Mortierella sp. by solid-state fermentation using combinatorial medium with spent mushroom substrate. Chem. Pap. 2018;72:2899–2908. doi: 10.1007/s11696-018-0519-2. DOI
Wyciszkiewicz M., Saeid A., Samoraj M., Chojnacka K. Solid-state solubilization of bones by B. megaterium in spent mushroom substrate as a medium for a phosphate enriched substrate. J. Chem. Technol. Biotechnol. 2017;92:1397–1405. doi: 10.1002/jctb.5135. DOI
Park N., Yun Y.-S., Park J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess. Eng. 2010;15:86–102. doi: 10.1007/s12257-009-0199-4. DOI
Abdi O., Kazemi M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015;6:1386–1399.
Menaga D., Rajakumar S., Ayyasamy P.M. Spent mushroom substrate: A crucial biosorbent for the removal of ferrous iron from groundwater. SN Appl. Sci. 2021;3:32. doi: 10.1007/s42452-020-04119-6. DOI
Akar S.T., Gorgulu A., Kaynak Z., Anilan B., Akar T. Biosorption of reactive blue 49 dye under batch and continuous mode using a mixed biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis cones. Chem. Eng. J. 2009;148:26–34. doi: 10.1016/j.cej.2008.07.027. DOI
Eliescu A., Georgescu A.A., Nicolescu C.M., Bumbac M., Cioateră N., Mureșeanu M., Buruleanu L.C. Biosorption of Pb(II) from aqueous solution using mushroom (Pleurotus ostreatus) biomass and spent mushroom substrate. Anal. Lett. 2020;53:2292–2319. doi: 10.1080/00032719.2020.1740722. DOI
Tay C.C., Liew H.H., Yin C.Y., Abdul-Talib S., Surif S., Suhaimi A.B., Yong S.K. Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism. Korean J. Chem. Eng. 2011;28:825–830. doi: 10.1007/s11814-010-0435-9. DOI
Yildirim A., Acay H. Biosorption studies of mushrooms for two typical dyes. JOTCSA. 2020;7:295–306. doi: 10.18596/jotcsa.581007. DOI
Qu J., Zang T., Gu H., Li K., Hu Y., Ren G., Xu X., Jin Y. Biosorption of copper ions from aqueous solution by Flammulina velutipes spent substrate. BioResources. 2015;10:8058–8075. doi: 10.15376/biores.10.4.8058-8075. DOI
Yang K., Li Y., Zheng H., Luan X., Li H., Wang Y., Du Q., Sui K., Li H., Xia Y. Adsorption of Congo red with hydrothermal treated shiitake mushroom. Mater. Res. Express. 2020;7:015103. doi: 10.1088/2053-1591/ab5ff3. DOI
Zhao S., Liu J., Tu H., Li F., Li X., Yang J., Liao J., Yang Y., Liu N., Sun Q. Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ. Sci. Pollut. Res. 2016;23:24846–24856. doi: 10.1007/s11356-016-7722-x. PubMed DOI
Mahmood T., Khan A., Naeem A., Hamayun M., Muska M., Farooq M., Hussain F. Adsorption of Ni(II) ions from aqueous solution onto a fungus Pleurotus ostreatus. Desalin. Water Treat. 2016;57:7209–7218. doi: 10.1080/19443994.2015.1022802. DOI
Amin F., Talpur F.N., Balouch A., Afridi H.I., Khaskheli A.A. Efficient entrapping of toxic Pb(II) ions from aqueous system on a fixed-bed column of fungal biosorbent. Geol. Ecol. Landsc. 2018;2:39–44. doi: 10.1080/24749508.2018.1438746. DOI
Wu J., Zhang T., Chen C., Feng L., Su X., Zhou L., Chen Y., Xia A., Wang X. Spent substrate of Ganodorma lucidumas a new bio-adsorbent for adsorption of three typical dyes. Bioresour. Technol. 2018;266:134–138. doi: 10.1016/j.biortech.2018.06.078. PubMed DOI
Amin F., Talpur F.N., Balouch A., Afridi H.I., Surhio M.L. Statistical methodology for biosorption of nitrate (NO3−) ions from aqueous solution by Pleurotus eryngii fungal biomass. Model. Earth Syst. Environ. 2017;3:1101–1112. doi: 10.1007/s40808-017-0358-0. DOI
Lin Y., Munroe P., Joseph S., Henderson R., Ziolkowski A. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere. 2012;87:151–157. doi: 10.1016/j.chemosphere.2011.12.007. PubMed DOI
Cheng C.H., Lehmann J., Engelhard M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface change along a climosequence. Geochim. Cosmochim. Acta. 2008;72:1598–1610. doi: 10.1016/j.gca.2008.01.010. DOI
Joseph S.D., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., Van Zwieten L., Kimber S., Cowie A., Singh B.P. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010;48:501–515. doi: 10.1071/SR10009. DOI
Bruun E.W., Hauggaard-Nielsen H., Ibrahim N., Egsgaard H., Ambus P., Jensen P.A., Dam-Johansen K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg. 2011;35:1182–1189. doi: 10.1016/j.biombioe.2010.12.008. DOI
Sohi S.P., Krull E., Lopez-Capel E., Bol R. A review of biochar and its use and function in soil. Adv. Agron. 2010;105:47–82.
Zhang H., Voroney R., Price G. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol. Biochem. 2015;83:19–28. doi: 10.1016/j.soilbio.2015.01.006. DOI
Schmidt H.P., Pandit B.H., Martinsen V., Cornelissen G., Conte P., Kammann C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture. 2015;5:723–741. doi: 10.3390/agriculture5030723. DOI
Kammann C.I., Schmidt H.P., Messerschmidt N., Linsel S., Steffens D., Müller C., Koyro H.W., Conte P., Joseph S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015;5:11080. doi: 10.1038/srep11080. PubMed DOI PMC
Wu Q., Xian Y., He Z., Zhang Q., Wu J., Ynag G., Zhang X., Qi H., Ma J., Xiao Y., et al. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci Rep. 2019;9:15999. doi: 10.1038/s41598-019-52554-2. PubMed DOI PMC
Chang J., Zhang H., Cheng H., Yan Y., Chang M., Cao Y., Huang F., Zhang G., Yan M. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water. Chemosphere. 2020;241:125121. doi: 10.1016/j.chemosphere.2019.125121. PubMed DOI
Zhang G., Liu N., Luo Y., Zhang H., Su L., Oh K., Cheng H. Efficient removal of Cu(II), Zn(II), and Cd(II) from aqueous solutions by a mineral-rich biochar derived from a spent mushroom (Agaricus bisporus) substrate. Materials. 2020;14:35. doi: 10.3390/ma14010035. PubMed DOI PMC
Wang X., Li X., Liu G., He Y., Chen C., Liu X., Li G., Gu Y., Zhao Y. Mixed heavy metals removal from wastewater by discarded mushroom-stick biochar: Adsorption properties and mechanisms. Environ. Sci. Process. Impacts. 2019;21:584–592. doi: 10.1039/C8EM00457A. PubMed DOI
Sewu D.D., Jung H., Kim S.S., Lee D.S., Woo S.H. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate. Bioresour. Technol. 2019;277:77–86. doi: 10.1016/j.biortech.2019.01.034. PubMed DOI
Chen G.J., Peng C.Y., Fang J.Y., Dong Y.Y., Zhu X.H., Cai H.M. Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide. Desalin Water Treat. 2016;57:12385–12395. doi: 10.1080/19443994.2015.1049959. DOI
Bhardwaj K., Sharma A., Tejwan N., Bhardwaj S., Bhardwaj P., Nepovimova E., Shami A., Kalia A., Kumar A., Abd-Elsalam K.A., et al. Pleurotus macro fungi-assisted nanoparticle synthesis and its potential applications: A review. J. Fungi. 2020;6:351. doi: 10.3390/jof6040351. PubMed DOI PMC
Owaid M.N., Ibraheem I.J. Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur. J. Nanomed. 2017;9:5–23. doi: 10.1515/ejnm-2016-0016. DOI
Sriramulu M., Shanmugam S., Ponnusamy V.K. Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro study. Colloid Interface Sci. Commun. 2020;35:100254. doi: 10.1016/j.colcom.2020.100254. DOI
Madhanraj R., Eyini M., Balaji P. Antioxidant assay of gold and silver nanoparticles from edible Basidiomycetes mushroom fungi. Free Radic. Antioxid. 2017;7:137–142. doi: 10.5530/fra.2017.2.20. DOI
Bhat R., Sharanabasava V.G., Deshpande R., Shetti U., Sanjeev G., Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anti-cancer evaluation. J. Photochem. B Biol. 2013;125:63–69. doi: 10.1016/j.jphotobiol.2013.05.002. PubMed DOI
Chaturvedi V.K., Yadav N., Rai N.K., Abd Ellah N.H., Bohara R.A., Rehan I.F., Marraiki N., Batiha G.E.S., Hetta H.F., Singh M.P. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of Herbonanoceutics. Molecules. 2020;25:3091. doi: 10.3390/molecules25133091. PubMed DOI PMC
Zeng D., Zhao J., Luk K.H., Cheung S.T., Wong K.H., Chen T. Potentiation of in vivo anti-cancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration. J. Agric. Food Chem. 2019;67:2865–2876. doi: 10.1021/acs.jafc.9b00193. PubMed DOI
Ismail A.F.M., Ahmed M.M., Salem A.A.M. Biosynthesis of silver nanoparticles using mushroom extracts: Induction of apoptosis in HepG2 and MCF-7 cells via caspases stimulation and regulation of BAX and Bcl-2 gene expressions. J. Pharm. Biomed. Sci. 2015;5:1–9.
Aygün A., Özdemir S., Gülcan M., Cellat K. Synthesis and Characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J. Pharm. Biomed. Anal. 2020;178:112970. doi: 10.1016/j.jpba.2019.112970. PubMed DOI
Anthony K.J.P., Murugan M., Jeyaraj M., Rathinam N.K., Sangiliyandi G. Synthesis of silver nanoparticles using pine mushroom extract: A potential antimicrobial agent against E. coli and B. subtilis. J. Ind. Eng. Chem. 2014;20:2325–2331. doi: 10.1016/j.jiec.2013.10.008. DOI
Mirunalini S., Arulmozhi V., Deepalakshmi K., Krishnaveni M. Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Not. Sci. Biol. 2012;4:55–61. doi: 10.15835/nsb448051. DOI
Manimaran K., Murugesan S., Ragavendran C., Balasubramani G., Natarajan D., Ganesan A., Seedevi P. Biosynthesis of TiO2 nanoparticles using edible mushroom (Pleurotus djamor) extract: Mosquito larvicidal, histopathological, antibacterial and anti-cancer effect. J. Clust Sci. 2020:1–12. doi: 10.1007/s10876-020-01888-3. DOI
Manimaran K., Balasubramani G., Ragavendran C., Natarajan D., Murugesan S. Biological applications of synthesized ZnO nanoparticles using Pleurotus djamor against mosquito larvicidal, histopathology, antibacterial, antioxidant and anti-cancer effect. J. Clust. Sci. 2020:1–13. doi: 10.1007/s10876-020-01927-z. DOI
Gurunathan S., Raman J., Malek S.N.A., John P.A., Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int J. Nanomed. 2013;8:4399–4413. PubMed PMC
Boobalan T., Sethupathi M., Sengottuvelan N., Kumar P., Balaji P., Gulyás B.Z., Padmanabhan P., Selvan S.T., Arun A. Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anti-cancer agents. ACS Appl. Nano Mater. 2020;3:5910–5919. doi: 10.1021/acsanm.0c01058. DOI
Pacquiao M.R., de Luna M.D.G., Thongsai N., Kladsomboon S., Paoprasert P. Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Appl. Surf. Sci. 2018;453:192–203. doi: 10.1016/j.apsusc.2018.04.199. DOI
Zulfajri M., Rasool A., Huang G.G. A fluorescent sensor from oyster mushroom-carbon dots for sensing nitroarenes in aqueous solutions. New J. Chem. 2020;44:10525–10535. doi: 10.1039/D0NJ02134B. DOI
Zulfajri M., Liu K.C., Pu Y.H., Rasool A., Dayalan S., Huang G.G. Utilization of carbon dots derived from Volvariella volvacea mushroom for a highly sensitive detection of Fe3+ and Pb2+ ions in aqueous solutions. Chemosensors. 2020;8:47. doi: 10.3390/chemosensors8030047. DOI
Yang Y., Liu M., Wang Y., Wang S., Miao H., Yang L. Carbon dots derived from fungus for sensing hyaluronic acid and hyaluronidase. Sens. Actuators B Chem. 2017;251:503–508. doi: 10.1016/j.snb.2017.05.086. DOI
Millikan L.E. Cosmetology, cosmetics, cosmeceuticals: Definitions and regulations. Clin. Dermatol. 2001;19:371–374. doi: 10.1016/S0738-081X(01)00195-X. PubMed DOI
Antignac E., Nohynek G.J., Re T., Clouzeau J., Toutain H. Safety of botanical ingredients in personal care products/cosmetics. Food Chem. Toxicol. 2011;49:324–341. doi: 10.1016/j.fct.2010.11.022. PubMed DOI
Hyde K.D., Bahkali A.H., Moslem M.A. Fungi-an unusual source for cosmetics. Fungal Divers. 2010;43:1–9. doi: 10.1007/s13225-010-0043-3. DOI
Camassola M. Mushrooms-the incredible factory for enzymes and metabolites productions. Ferment. Technol. 2013:2. doi: 10.4172/2167-7972.1000e117. DOI
Taofiq O., Heleno S.A., Calhelha R.C., Alves M.J., Barros L., Barreiro M.F., González-Paramás A.M., Ferreira I.C.F.R. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Molecules. 2016;21:1372. doi: 10.3390/molecules21101372. PubMed DOI PMC
Taofiq O., Heleno S.A., Calhelha R.C., Alves M.J., Barros L., González-Paramás A.M., Ferreira I.C.F.R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 2017;108:139–147. doi: 10.1016/j.fct.2017.07.051. PubMed DOI
Gupta N., Dubey A., Prasad P., Roy M. Formulation and evaluation of herbal fairness cream comprising hydroalcoholic extracts of Pleurotus ostreatus, Glycyrrhiza glabra and Camellia sinensis. UK J. Pharm. Biosci. 2015;3:41. doi: 10.20510/ukjpb/3/i3/89410. DOI
Hapsari R., Elya B., Amin J. Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract. Int. J. Med. Arom. Plants. 2012;2:135–140.
Lourith N., Pungprom S., Kanlayavattanakul M. Formulation and efficacy evaluation of the safe and efficient moisturizing snow mushroom hand sanitizer. J. Cosmet. Dermatol. 2021;20:554–560. doi: 10.1111/jocd.13543. PubMed DOI PMC
Taofiq O., Heleno S.A., Calhelha R.C., Fernandes I.P., Alves M.J., Barros L., González-Paramás A.M., Ferreira I.C.F.R. Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Ind. Crops Prod. 2018;124:44–52. doi: 10.1016/j.indcrop.2018.07.057. DOI