Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications

. 2020 Jun 18 ; 25 (12) : . [epub] 20200618

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32570836

Grantová podpora
Faculty of Science, VT2019-2021 UHK CEP - Centrální evidence projektů

Fruits and vegetables are the highly used food products amongst the horticultural crops. These items are consumed uncooked, nominally cooked or fully cooked, according to their nature and cooking process. With the change in diet habits and rising population, the production, as well as the processing of horticultural crops, has exponentially improved to meet its increasing demand. A large amount of peel waste is generated from fruit and vegetable-based industries and household kitchen and has led to a big nutritional and economic loss and environmental problems. Processing of fruits and vegetables alone generates a significant waste, which amounts to 25-30% of the total product. Most common wastes include pomace, peels, rind and seeds, which are highly rich in valuable bioactive compounds such as carotenoids, enzymes, polyphenols, oils, vitamins and many other compounds. These bioactive compounds show their application in various industries such as food to develop edible films, food industries for probiotics and other industries for valuable products. The utilization of these low-cost waste horticultural wastes for producing the value-added product is a novel step in its sustainable utilization. The present review intends to summarize the different types of waste originating from fruits as well as vegetables peels and highlight their potential in developing edible films, probiotics, nanoparticles, carbon dots, microbial media, biochar and biosorbents.

Zobrazit více v PubMed

Plazzotta S., Manzocco L., Nicoli M.C. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 2017;63:51–59. doi: 10.1016/j.tifs.2017.02.013. DOI

National Academy of Agricultural Sciences . Saving the Harvest: Reducing the Food Loss and Waste. National Academy of Agricultural Sciences; New Delhi, India: 2019. [(accessed on 8 October 2019)]. Available online: http://naasindia.org/documents/Saving%20the%20Harvest.pdf.

Chang J.I., Tsai J.J., Wu K.H. Composting of vegetable waste. Waste Manag. Res. 2006;24:354–362. doi: 10.1177/0734242X06065727. PubMed DOI

Panda S.K., Mishra S.S., Kayitesi E., Ray R.C. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environ. Res. 2016;146:161–172. doi: 10.1016/j.envres.2015.12.035. PubMed DOI

Galanakis C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012;26:68–87. doi: 10.1016/j.tifs.2012.03.003. DOI

Rudra S.G., Nishad J., Jakhar N., Kaur C. Food industry waste: Mine of nutraceuticals. Int. J. Sci. Environ. 2015;4:205–229.

Gorinstein S., Martín-Belloso O., Park Y.-S., Haruenkit R., Lojek A., Ĉíž M., Caspi A., Libman I., Trakhtenberg S. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001;74:309–315. doi: 10.1016/S0308-8146(01)00157-1. DOI

Soong Y.-Y., Barlow P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004;88:411–417. doi: 10.1016/j.foodchem.2004.02.003. DOI

Sagar N.A., Pareek S., Sharma S., Yahia E.M., Lobo M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018;17:512–531. doi: 10.1111/1541-4337.12330. PubMed DOI

Siddiqui A., Salahuddin T., Riaz A., Zohra R.R., Naheed S. Production of amylase from Bacillus sp. AY3 using fruit peels as substrate. FUUAST J. Biol. 2014;4:213–215.

Santo A.P.D.E., Cartolano N.S., Silva T.F., Soares F.A.S.D.M., Gioielli L., Perego P., Converti A., De Oliveira M.N. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. Int. J. Food Microbiol. 2012;154:135–144. doi: 10.1016/j.ijfoodmicro.2011.12.025. PubMed DOI

Shanmugavadivu M., Kuppusamy S., Ranjithkumar R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug. Deliv. 2014;2:174–182.

Nasirifar S.Z., Maghsoudlou A., Oliyaei N. Effect of active lipid-based coating incorporated with nanoclay and orange peel essential oil on physicochemical properties of Citrus sinensis. Food Sci. Nutr. 2018;6:1508–1518. doi: 10.1002/fsn3.681. PubMed DOI PMC

Jiao X.-Y., Li L.-S., Qin S., Zhang Y., Huang K., Xu L. The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloids Surfaces A: Physicochem. Eng. Asp. 2019;577:306–314. doi: 10.1016/j.colsurfa.2019.05.073. DOI

Zhou N., Chen H., Xi J., Yao D., Zhou Z., Tian Y., Lu X. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour. Technol. 2017;232:204–210. doi: 10.1016/j.biortech.2017.01.074. PubMed DOI

Enniya I., Jourani A. Study of Methylene Blue Removal by a biosorbent prepared with Apple peels. J. Mater. Environ. Sci. 2017;8:4573–4581. doi: 10.26872/jmes.2017.8.12.883. DOI

Zaragoza M.D.L.L.Z., González-Reza R.M., Mendoza-Munoz N., Miranda-Linares V., Bernal-Couoh T.F., Mendoza-Elvira S., Quintanar-Guerrero D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int. J. Mol. Sci. 2018;19:705. doi: 10.3390/ijms19030705. PubMed DOI PMC

Wu Y., Luo Y., Wang Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT. 2012;48:283–290. doi: 10.1016/j.lwt.2012.03.027. DOI

Prakash A., Baskaran R., Vadivel V. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT. 2020;118:108851. doi: 10.1016/j.lwt.2019.108851. DOI

Raghav P.K., Agarwal N., Saini M. Edible coating of fruits and vegetables: A review. Int. J. Sci. Res. Mod. Edu. 2016;1:188–204.

Ullah A., Abbasi N., Shafique M., Qureshi A.A. Influence of Edible Coatings on Biochemical Fruit Quality and Storage Life of Bell Pepper cv. “Yolo Wonder.”. J. Food Qual. 2017;2017:1–11. doi: 10.1155/2017/2142409. DOI

Adukwu E., Allen S.C., Phillips C.A. The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. J. Appl. Microbiol. 2012;113:1217–1227. doi: 10.1111/j.1365-2672.2012.05418.x. PubMed DOI

Alparslan Y., Metin C., Yapıcı H.H., Baygar T., Günlü A., Baygar T. Combined effect of orange peel essential oil and gelatin coating on the quality and shelf life of shrimps. J. Food Saf. Food Qual. 2017;68:69–78.

Etxabide A., Urdanpilleta M., Gómez-Arriaran I., De La Caba K., Guerrero P. Effect of pH and lactose on cross-linking extension and structure of fish gelatin films. React. Funct. Polym. 2017;117:140–146. doi: 10.1016/j.reactfunctpolym.2017.04.005. DOI

Hanani Z.A.N., Yee F.C., Nor-Khaizura M. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 2019;89:253–259. doi: 10.1016/j.foodhyd.2018.10.007. DOI

Shin S.-H., Chang Y., Lacroix M., Han J. Control of microbial growth and lipid oxidation on beef product using an apple peel-based edible coating treatment. LWT. 2017;84:183–188. doi: 10.1016/j.lwt.2017.05.054. DOI

Al-Anbari I.H., Dakhel A.M., Adnan A. The effect of adding local orange peel powder to microbial inhibition and oxidative reaction within edible film component. Plant Arc. 2019;19:1006–1012.

Moghadam M., Salami M., Mohammadian M., Khodadadi M., Emam-Djomeh Z. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocoll. 2020 doi: 10.1016/j.foodhyd.2020.105735. DOI

Tammineni N., Ünlü G., Min S.C. Development of antimicrobial potato peel waste-based edible films with oregano essential oil to inhibit Listeria monocytogenes on cold-smoked salmon. Int. J. Food Sci. Tech. 2013;48:211–214. doi: 10.1111/j.1365-2621.2012.03156.x. DOI

Alparslan Y., Baygar T. Effect of Chitosan Film Coating Combined with Orange Peel Essential Oil on the Shelf Life of Deepwater Pink Shrimp. Food Bioprocess Technol. 2017;10:842–853. doi: 10.1007/s11947-017-1862-y. DOI

Rahmawati D., Chandra M., Santoso S., Puteri M.G. AIP Conference Proceedings. AIP Publishing LLC; Melville, NY, USA: 2017. Application of lemon peel essential oil with edible coating agent to prolong shelf life of tofu and strawberry. DOI

Radi M., Akhavan H.-R., Amiri S., Akhavan-Darabi S. The use of orange peel essential oil microemulsion and nanoemulsion in pectin-based coating to extend the shelf life of fresh-cut orange. J. Food Process. Preserv. 2017 doi: 10.1111/jfpp.13441. DOI

Borah P.P., Das P., Badwaik L.S. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrason. Sonochem. 2017;36:11–19. doi: 10.1016/j.ultsonch.2016.11.010. PubMed DOI

Hanani Z.A.N., Husna A.A., Syahida S.N., Khaizura M.N., Jamilah B. Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packag. Shelf Life. 2018;18:201–211. doi: 10.1016/j.fpsl.2018.11.004. DOI

Abdel-Hamid M., Romeih E., Huang Z., Enomoto T., Huang L., Li L. Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chem. 2019 doi: 10.1016/j.foodchem.2019.125400. PubMed DOI

Cerezal P., Duarte G. Use of skin in the elaboration of concentrated products of cactus pear (Opuntia ficus-indica (L.) Miller) J. Prof. Assoc. Cactus. 2005;7:61–83.

Crizel T.D.M., Jablonski A., Rios A.D.O., Rech R., Flôres S.H. Dietary fiber from orange byproducts as a potential fat replacer. LWT. 2013;53:9–14. doi: 10.1016/j.lwt.2013.02.002. DOI

Chan C.-L., Gan R.-Y., Shah N.P., Corke H. Enhancing antioxidant capacity of Lactobacillus acidophilus-fermented milk fortified with pomegranate peel extracts. Food Biosci. 2018;26:185–192. doi: 10.1016/j.fbio.2018.10.016. DOI

Coelho E.M., Souza M.E., Corrêa L.C., Viana A.C., De Azevêdo L.C., Lima M.D.S. Bioactive Compounds and Antioxidant Activity of Mango Peel Liqueurs (Mangifera indica L.) Produced by Different Methods of Maceration. Antioxidants. 2019;8:102. doi: 10.3390/antiox8040102. PubMed DOI PMC

Drago L. Probiotics and Colon Cancer. Microorganisms. 2019;7:66. doi: 10.3390/microorganisms7030066. PubMed DOI PMC

Sah B.N.P., Vasiljevic T., McKechnie S., Donkor O. Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. J. Food Sci. Technol. 2015;53:1698–1708. doi: 10.1007/s13197-015-2100-0. PubMed DOI PMC

Vicenssuto G.M., De Castro R.J.S. Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. Biocatal. Agric. Biotechnol. 2020;24:101564. doi: 10.1016/j.bcab.2020.101564. DOI

Pgi D., Jwa S., Rmusk R. Formulation and development of composite fruit peel powder incorporated fat and sugar-free probiotic set yogurt. GSC Boil. Pharm. Sci. 2020;11:93–99. doi: 10.30574/gscbps.2020.11.1.0084. DOI

Akhtar M.S., Panwar J., Yun Y.-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013;1:591–602. doi: 10.1021/sc300118u. DOI

Ghosh P.R., Fawcett D., Sharma S.B., Poinern G.E.J. Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste. Materials. 2017;10:852. doi: 10.3390/ma10080852. PubMed DOI PMC

Shah M., Fawcett D., Sharma S., Tripathy S.K., Poinern G.E.J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials. 2015;8:7278–7308. doi: 10.3390/ma8115377. PubMed DOI PMC

Fawcett D., Verduin J., Shah M., Sharma S.B., Poinern G.E.J. A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. J. Nanosci. 2017;2017:1–15. doi: 10.1155/2017/8013850. DOI

Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford University Press; Oxford, UK: 2000.

Thakkar K., Mhatre S.S., Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotech. Boil. Med. 2010;6:257–262. doi: 10.1016/j.nano.2009.07.002. PubMed DOI

Kumar H., Bhardwaj K., Kuca K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-Based Green Synthesis of Metallic Nanoparticles: Applications beyond Fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC

Naganathan K., Thirunavukkarasu S. Proceedings of the IOP Conference Series: Materials Science and Engineering. Volume 191. IOP Publishing; Bristol, UK: 2017. Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, anti-oxidant and anti-tumor cell line studies; p. 12009.

Shet A.R., Tantri S., Bennal A. Economical biosynthesis of silver nanoparticles using fruit waste. J. Chem. Pharm. Sci. 2016;9:2306–2311.

Reenaa M., Menon A.S. Synthesis of Silver Nanoparticles from Different Citrus Fruit Peel Extracts and a Comparative Analysis on its Antibacterial Activity. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2358–2365. doi: 10.20546/ijcmas.2017.607.337. DOI

Skiba M.I., Vorobyova V.I. Synthesis of Silver Nanoparticles Using Orange Peel Extract Prepared by Plasmochemical Extraction Method and Degradation of Methylene Blue under Solar Irradiation. Adv. Mater. Sci. Eng. 2019;2019:1–8. doi: 10.1155/2019/8306015. DOI

Samreen F.G., Muzaffar R., Nawaz M., Gul S., Basra M.A.R. Synthesis, Characterization and Anti-Microbial Activity of Citrus limon Mediated Nanoparticles. Preprints. 2018:2018110417. doi: 10.20944/preprints201811.0417.v1. DOI

Ibrahim H.M.M. Green synthesis and characterization of silvernanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:265–275. doi: 10.1016/j.jrras.2015.01.007. DOI

Devanesan S., AlSalhi M., Balaji R.V., A Ranjitsingh A.J., Ahamed A., Alfuraydi A., Alqahtani F.Y., Aleanizy F.S., Othman A.H. Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract. Nanoscale Res. Lett. 2018;13:315. doi: 10.1186/s11671-018-2731-y. PubMed DOI PMC

Ajmal N., Saraswat K., Sharma V., Zafar M.E. Synthesis and antibacterial activity of silver nanoparticles from Prunus armeniaca (Apricot) fruit peel extract. Bull. Environ. Pharmacol. Life Sci. 2016;5:91–94.

Kokila T., Ramesh P.S., Geetha D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci. 2015;5:911–920. doi: 10.1007/s13204-015-0401-2. DOI

Barros C.H.N., Cruz G.C.F., Mayrink W., Tasic L. Bio-based synthesis of silver nanoparticles from orange waste: Effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol. Sci. Appl. 2018;11:1–14. doi: 10.2147/NSA.S156115. PubMed DOI PMC

Nava O., Soto-Robles C., Gómez-Gutiérrez C., Vilchis-Nestor A., Castro-Beltrán A., Olivas A., Morales P.L. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 2017;1147:1–6. doi: 10.1016/j.molstruc.2017.06.078. DOI

Das G., Patra J.K., Basavegowda N., Vishnuprasad C.N., Shin H.-S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomed. 2019;14:4741–4754. doi: 10.2147/IJN.S210517. PubMed DOI PMC

Bhuvaneswari S., Subashini G., Subramaniyam S. Green synthesis of zinc oxide nanoparticles using potato peel and degradation of textile mill effluent by photocatalytic activity. World J. Pharm. Res. 2017;6:774–785. doi: 10.20959/wjpr20176-8496. DOI

Patra J.K., Kwon Y., Baek K.-H. Green biosynthesis of gold nanoparticles by onion peel extract: Synthesis, characterization and biological activities. Adv. Powder Technol. 2016;27:2204–2213. doi: 10.1016/j.apt.2016.08.005. DOI

Kumar V., Verma S., Choudhury S., Tyagi M., Chatterjee S., Variyar P.S. Biocompatible silver nanoparticles from vegetable waste: Its characterization and bio-efficacy. Int. J. Nanomater. Sci. 2015;4:70–86.

Tamileswari R., Nisha M.H., Jesurani S., Kanagesan S., Hashim M., Catherine S., Alexander P. Synthesis of silver nanoparticles using the vegetable extract of Raphanus sativus (radish) and assessment of their antibacterial activity. Int. J. Adv. Technol. Eng. Sci. 2015;3:207–212.

Fan H., Zhang M., Bhandari B., Yang C.-H. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends Food Sci. Technol. 2020;95:86–96. doi: 10.1016/j.tifs.2019.11.008. DOI

Kumar H., Kuča K., Bhatia S.K., Saini K., Kaushal A., Verma R., Bhalla T.C., Kumar D. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. Sensors. 2020;20:1966. doi: 10.3390/s20071966. PubMed DOI PMC

Wang Y., Hu A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C. 2014;2:6921. doi: 10.1039/C4TC00988F. DOI

Ajila C., Bhat S., Rao U.P. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007;102:1006–1011. doi: 10.1016/j.foodchem.2006.06.036. DOI

Rattanapoltee P., Kaewkannetra P. Utilization of Agricultural Residues of Pineapple Peels and Sugarcane Bagasse as Cost-Saving Raw Materials in Scenedesmus acutus for Lipid Accumulation and Biodiesel Production. Appl. Biochem. Biotechnol. 2014;173:1495–1510. doi: 10.1007/s12010-014-0949-4. PubMed DOI

Pérez-Jiménez J., Saura-Calixto F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res. Int. 2018;111:148–152. doi: 10.1016/j.foodres.2018.05.023. PubMed DOI

Cao L., Meziani M.J., Sahu S., Sun Y.-P. Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials. Accounts Chem. Res. 2012;46:171–180. doi: 10.1021/ar300128j. PubMed DOI

Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Tyagi A., Tripathi K.M., Choudhary S., Singh N., Gupta R.K. Green synthesis of carbon quantum dots from lemon peel waste: Applications in sensing and photocatalysis. RSC Adv. 2016;6:72423–72432. doi: 10.1039/C6RA10488F. DOI

Huang C.-C., Hung Y.-S., Weng Y.-M., Chen W., Lai Y.-S. Sustainable development of carbon nanodots technology: Natural products as a carbon source and applications to food safety. Trends Food Sci. Technol. 2019;86:144–152. doi: 10.1016/j.tifs.2019.02.016. DOI

Vandarkuzhali S.A.A., Natarajan S., Jeyabalan S., Sivaraman G., Singaravadivel S., Muthusubramanian S., Viswanathan B. Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega. 2018;3:12584–12592. doi: 10.1021/acsomega.8b01146. PubMed DOI PMC

Ghosh S., Ghosal K., Mohammad S.A., Sarkar K. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem. Eng. J. 2019;373:468–484. doi: 10.1016/j.cej.2019.05.023. DOI

Huang Q., Lin X., Zhu J.J., Tong Q.X. Pd-Au@ carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 2017;94:507–512. doi: 10.1016/j.bios.2017.03.048. PubMed DOI

Lu W., Qin X., Liu S., Chang G., Zhang Y., Luo Y., Asiri A.M., Al-Youbi A.O., Sun X. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Anal. Chem. 2012;84:5351–5357. doi: 10.1021/ac3007939. PubMed DOI

Xiao P., Ke Y., Lu J., Huang Z., Zhu X., Wei B., Huang L. Photoluminescence immunoassay based on grapefruit peel-extracted carbon quantum dots encapsulated into silica nanospheres for p53 protein. Biochem. Eng. J. 2018;139:109–116. doi: 10.1016/j.bej.2018.08.012. DOI

Bankoti K., Rameshbabu A.P., Datta S., Das B., Mitra A., Dhara S. Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing. J. Mater. Chem. B. 2017;5:6579–6592. doi: 10.1039/C7TB00869D. PubMed DOI

Zhou J., Sheng Z., Han H.-Y., Zhou M., Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett. 2012;66:222–224. doi: 10.1016/j.matlet.2011.08.081. DOI

Chatzimitakos T., Kasouni A., Sygellou L., Avgeropoulos A., Troganis A., Stalikas C. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta. 2017;175:305–312. doi: 10.1016/j.talanta.2017.07.053. PubMed DOI

Prasannan A., Imae T. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind. Eng. Chem. Res. 2013;52:15673–15678. doi: 10.1021/ie402421s. DOI

Aji M.P., Susanto, Wiguna P.A. Sulhadi Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. J. Theor. Appl. Phys. 2017;22:119–126. doi: 10.1007/s40094-017-0250-3. DOI

Yadav H.A., Eraiah B., Basavaraj R., Nagabhushana H., Darshan G., Sharma S., Prasad B.D., Nithya R., Shanthi S. Rapid synthesis of C-dot@TiO2 core-shell composite labeling agent: Probing of complex fingerprints recovery in fresh water. J. Alloy Compd. 2018;742:1006–1018. doi: 10.1016/j.jallcom.2017.12.251. DOI

Vikneswaran R., Ramesh S., Yahya R. Green synthesized carbon nanodots as a fluorescent probe for selective and sensitive detection of iron(III) ions. Mater. Lett. 2014;136:179–182. doi: 10.1016/j.matlet.2014.08.063. DOI

Jadhav P., Sonne M., Kadam A., Patil S., Dahigaonkar K., Oberoi J.K. Formulation of cost effective alternative bacterial culture media using fruit and vegetables waste. Int. J. Curr. Res. Rev. 2018;10:6–15.

Basu S., Bose C., Ojha N., Das N., Das J., Pal M., Khurana S. Evolution of bacterial and fungal growth media. Bioinformation. 2015;11:182–184. doi: 10.6026/97320630011182. PubMed DOI PMC

Deivanayaki M., Iruthayaraj A.P. Alternative vegetable nutrient source for microbial growth. Inter. J. Biosci. 2012;2:47–51.

Wasas A.D., Huebner R.E., Klugman K.P. Use of dorset egg medium for maintenance and transport of Neisseria meningitides and Haemophilus influenzae Type b. J. Clin. Microbiol. 1999;37:2045–2046. doi: 10.1128/JCM.37.6.2045-2046.1999. PubMed DOI PMC

Tijani I.D.R., Jamal P., Alam M., Mirghani M. Optimization of cassava peel medium to an enriched animal feed by the white rot fungi Panus tigrinus M609RQY. Int. Food Res. J. 2012;19:427–432.

Jamal P., Saheed O.K., Kari M.I.A., Alam Z., Muyibi S.A. Cellulolytic Fruits Wastes: A Potential Support for Enzyme Assisted Protein Production. J. Boil. Sci. 2013;13:379–385. doi: 10.3923/jbs.2013.379.385. DOI

Kahraman S., Gurdal I.H. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresour. Technol. 2002;82:215–217. doi: 10.1016/S0960-8524(01)00193-6. PubMed DOI

Milala M., Shugaba A., Gidado A., Ene A., Wafar J. Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res. J. Agric. Biol. Sci. 2005;1:325–328.

Putri C.H., Janica L., Jannah M., Ariana P.P. Utilization of dragon fruit peel waste as microbial growth media; Proceedings of the 10th CISAK; Daejeon, Korea. July 2017; pp. 91–95.

Kindo A., Tupaki-Sreepurna A., Yuvaraj M. Banana peel culture as an indigenous medium for easy identification of late-sporulation human fungal pathogens. Indian J. Med. Microbiol. 2016;34:457. doi: 10.4103/0255-0857.195369. PubMed DOI

Hasanin M., Hashem A.H. Eco-friendly, economic fungal universal medium from watermelon peel waste. J. Microbiol. Methods. 2020;168:105802. doi: 10.1016/j.mimet.2019.105802. PubMed DOI

Carota E., Petruccioli M., D’Annibale A., Gallo A.M., Crognale S. Orange peel waste–based liquid medium for biodiesel production by oleaginous yeasts. Appl. Microbiol. Biotechnol. 2020;104:4617–4628. doi: 10.1007/s00253-020-10579-y. PubMed DOI

Verma N., Kumar V., Bansal M. Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. Biocatal. Agric. Biotechnol. 2018;16:483–492. doi: 10.1016/j.bcab.2018.09.021. DOI

Verma N., Bansal M.C., Kumar V. Pea peel waste: A lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. Bioresources. 2011;6:1505–1519.

Kadam A., Patil S., Sonne M., Dahigaonkar K., Oberoi J.K., Jadhav P. Cost effective alternative fungal culture media formulation using fruit and vegetables waste. Int. J. Curr. Res. 2017;9:56887–56893.

Bruno G., Mike P., Christelle B., Goodspeed K. Biochar is carbon negative. Nature Geosci. 2009;2:2. doi: 10.1038/ngeo395. DOI

Oh J.-I., Lee J., Lee T., Ok Y.S., Lee S.-R., Kwon E.E. Strategic CO 2 utilization for shifting carbon distribution from pyrolytic oil to syngas in pyrolysis of food waste. J. CO2 Util. 2017;20:150–155. doi: 10.1016/j.jcou.2017.05.017. DOI

Carmona-Cabello M., Garcia I.L., Leiva-Candia D., Dorado M.P. Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green Sustain. Chem. 2018;14:67–79. doi: 10.1016/j.cogsc.2018.06.011. DOI

Liu Z., Zhang F.-S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard Mater. 2009;167:933–939. doi: 10.1016/j.jhazmat.2009.01.085. PubMed DOI

Inyang M., Gao B., Yao Y., Xue Y., Zimmerman A.R., Pullammanappallil P., Cao X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012;110:50–56. doi: 10.1016/j.biortech.2012.01.072. PubMed DOI

Xu X., Cao X., Zhao L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere. 2013;92:955–961. doi: 10.1016/j.chemosphere.2013.03.009. PubMed DOI

Cao X., Ma L., Gao B., Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009;43:3285–3291. doi: 10.1021/es803092k. PubMed DOI

Yao Y., Gao B., Inyang M., Zimmerman A.R., Cao X., Pullammanappallil P., Yang L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour. Technol. 2011;102:6273–6278. doi: 10.1016/j.biortech.2011.03.006. PubMed DOI

Lam S.S., Liew R.K., Cheng C.-K., Rasit N., Ooi C.K., Ma N.L., Ng J.-H., Lam W.H., Chong C.T., Chase H.A. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J. Environ. Manag. 2018;213:400–408. doi: 10.1016/j.jenvman.2018.02.092. PubMed DOI

Zhang B., Wu Y., Cha L. Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: Performance, isotherm, and kinetic studies. J. Dispers. Sci. Technol. 2019;41:125–136. doi: 10.1080/01932691.2018.1561298. DOI

Wang C., Gu L., Liu X., Zhang X., Cao L., Hu X. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. Int. Biodeterior. Biodegradation. 2016;111:78–84. doi: 10.1016/j.ibiod.2016.04.029. DOI

Fu B., Ge C., Yue L., Luo J., Feng D., Deng H., Yu H. Characterization of Biochar Derived from Pineapple Peel Waste and Its Application for Sorption of Oxytetracycline from Aqueous Solution. Bioresouces. 2016;11:9017–9035. doi: 10.15376/biores.11.4.9017-9035. DOI

Hu X., Zhang X., Ngo H.H., Guo W., Wen H., Li C., Zhang Y., Ma C. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 2020;707:135544. doi: 10.1016/j.scitotenv.2019.135544. PubMed DOI

Wu Y., Cha L., Fane Y., Fang P., Ming Z., Sha H. Activated Biochar Prepared by Pomelo Peel Using H3PO4 for the Adsorption of Hexavalent Chromium: Performance and Mechanism. Water Air Soil Pollut. 2017;228:405. doi: 10.1007/s11270-017-3587-y. DOI

Wu J., Yang J., Feng P., Huang G., Xu C., Lin B. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere. 2020;246:125734. doi: 10.1016/j.chemosphere.2019.125734. PubMed DOI

Selvanathan M., Yann K.T., Chung C.H., Selvarajoo A., Arumugasamy S.K., Sethu V. Adsorption of copper(II) ion from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel: Feedforward neural network modelling study. Water Air Soil Pollut. 2017 doi: 10.1007/s11270-017-3472-8. DOI

Cao Q., Huang Z., Liu S., Wu Y. Potential of Punica granatum biochar to adsorb Cu(II) in soil. Sci. Rep. 2019 doi: 10.1038/s41598-019-46983-2. PubMed DOI PMC

Shakya A., Núñez-Delgado A., Agarwal T. Biochar synthesis from sweet lime peel for hexavalent chromium remediation from aqueous solution. J. Environ. Manag. 2019 doi: 10.1016/j.jenvman.2019.109570. PubMed DOI

Sun Y., Yang G., Zhang L., Sun Z. Preparation of high performance H 2 S removal biochar by direct fluidized bed carbonization using potato peel waste. Process. Saf. Environ. Prot. 2017;107:281–288. doi: 10.1016/j.psep.2017.02.018. DOI

Niazi N.K., Murtaza B., Bibi I., Shahid M., White J., Nawaz M., Bashir S., Shakoor M., Choppala G., Murtaza G., et al. Environmental Materials and Waste. Elsevier BV; Amsterdam, The Netherlands: 2016. Removal and Recovery of Metals by Biosorbents and Biochars Derived From Biowastes; pp. 149–177.

Vijayaraghavan K., Yun Y.-S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008;26:266–291. doi: 10.1016/j.biotechadv.2008.02.002. PubMed DOI

Wang J., Chen C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009;27:195–226. doi: 10.1016/j.biotechadv.2008.11.002. PubMed DOI

Park N., Yun Y.-S., Park J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010;15:86–102. doi: 10.1007/s12257-009-0199-4. DOI

Abdi O., Kazemi M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015;6:1386–1399.

Hameed B., Ahmad A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 2009;164:870–875. doi: 10.1016/j.jhazmat.2008.08.084. PubMed DOI

Krishni R., Foo K.Y., Hameed B. Food cannery effluent, pineapple peel as an effective low-cost biosorbent for removing cationic dye from aqueous solutions. Desalination Water Treat. 2013;52:6096–6103. doi: 10.1080/19443994.2013.815686. DOI

Shakoor S., Nasar A. Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent. Groundw. Sustain. Dev. 2017;5:152–159. doi: 10.1016/j.gsd.2017.06.005. DOI

Jawad A.H., Kadhum A.M., Ngoh Y.S. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: Kinetics, equilibrium and thermodynamics studies. DESALINATION Water Treat. 2018;109:231–240. doi: 10.5004/dwt.2018.21976. DOI

Romero-Cano L.A., González-Gutiérrez L.V., A Baldenegro-Pérez L., Carrasco-Marin F. Grapefruit peels as biosorbent: Characterization and use in batch and fixed bed column for Cu(II) uptake from wastewater. J. Chem. Technol. Biotechnol. 2017;92:1650–1658. doi: 10.1002/jctb.5161. DOI

Ibisi N.E., Asoluka C.A. Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water. Chem. Int. 2018;4:52–59.

Lam Y.F., Lee L.Y., Chua S.J., Lim S.S., Gan S. Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent. Ecotoxicol. Environ. Saf. 2016;127:61–70. doi: 10.1016/j.ecoenv.2016.01.003. PubMed DOI

Pavan F.A., Mazzocato A.C., Jacques R.A., Dias S.L.P. Ponkan peel: A potential biosorbent for removal of Pb(II) ions from aqueous solution. Biochem. Eng. J. 2008;40:357–362. doi: 10.1016/j.bej.2008.01.004. DOI

Mohammed R., Chong M.F. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent. J. Environ. Manag. 2014;132:237–249. doi: 10.1016/j.jenvman.2013.11.031. PubMed DOI

Pavan F.A., Lima I.S., Lima E.C., Airoldi C., Gushikem Y. Use of Ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions. J. Hazard. Mater. 2006;137:527–533. doi: 10.1016/j.jhazmat.2006.02.025. PubMed DOI

Singh S., Parveen N., Gupta H. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environ. Technol. Innov. 2018;12:189–195. doi: 10.1016/j.eti.2018.09.001. DOI

Ahmed D., Abid H., Riaz A. Lagenaria siceraria peel biomass as a potential biosorbent for the removal of toxic metals from industrial wastewaters. Int. J. Environ. Stud. 2018;75:1–11. doi: 10.1080/00207233.2018.1457285. DOI

Ng H.W., Lee L.Y., Chan W.L., Gan S., Chemmangattuvalappil N.G. Luffa acutangula peel as an effective natural biosorbent for malachite green removal in aqueous media: Equilibrium, kinetic and thermodynamic investigations. DESALINATION Water Treat. 2015;57:1–10. doi: 10.1080/19443994.2015.1016460. DOI

Gill R., Mahmood A., Nazir R. Biosorption potential and kinetic studies of vegetable waste mixture for the removal of Nickel(II) J. Mater. Cycles Waste Manag. 2013;15:115–121. doi: 10.1007/s10163-012-0079-4. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...