Interlaboratory Coverage Test on Plant Food Bioactive Compounds and their Metabolites by Mass Spectrometry-Based Untargeted Metabolomics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30149593
PubMed Central
PMC6161174
DOI
10.3390/metabo8030046
PII: metabo8030046
Knihovny.cz E-zdroje
- Klíčová slova
- mass spectrometry, method development, phytochemicals,
- Publikační typ
- časopisecké články MeSH
Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.
INRA Human Nutrition Unit Université Clermont Auvergne F63000 Clermont Ferrand France
Instituto de Biologia Experimental Tecnológica Av da República 2780 157 Oeiras Portugal
Research Institute for Medicines Avenida Professor Gama Pinto 1649 003 Lisbon Portugal
VTT Technical Research Centre of Finland Ltd P O Box 1000 FI 02044 VTT Espoo Finland
Zobrazit více v PubMed
Wishart D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008;19:482–493. doi: 10.1016/j.tifs.2008.03.003. DOI
Del-Castillo-Alonso M., Castagna A., Csepregi K., Hideg E., Jakab G., Jansen M.A.K., Jug T., Llorens L., Matai A., Martinez-Luescher J., et al. Environmental Factors Correlated with the Metabolite Profile of Vitis vinifera cv. Pinot Noir Berry Skins along a European Latitudinal Gradient. J. Agric. Food Chem. 2016;64:8722–8734. doi: 10.1021/acs.jafc.6b03272. PubMed DOI
Creydt M., Fischer M. Omics approaches for food authentication. Electrophoresis. 2018;39:1569–1581. doi: 10.1002/elps.201800004. PubMed DOI
Dragsted L.O., Gao Q., Scalbert A., Vergères G., Kolehmainen M., Manach C., Brennan L., Afman L.A., Wishart D.S., Andres Lacueva C., et al. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr. 2018;13:14. doi: 10.1186/s12263-018-0603-9. PubMed DOI PMC
Allwood J.W., Goodacre R. An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem. Anal. 2010;21:33–47. doi: 10.1002/pca.1187. PubMed DOI
Kaspar S., Peukert M., Svatos A., Matros A., Mock H. MALDI-imaging mass spectrometry—An emerging technique in plant biology. Proteomics. 2011;11:1840–1850. doi: 10.1002/pmic.201000756. PubMed DOI
Kueger S., Steinhauser D., Willmitzer L., Giavalisco P. High-resolution plant metabolomics: From mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 2012;70:39–50. doi: 10.1111/j.1365-313X.2012.04902.x. PubMed DOI
Wu H., Guo J., Chen S., Liu X., Zhou Y., Zhang X., Xu X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2013;72:267–291. doi: 10.1016/j.jpba.2012.09.004. PubMed DOI
Koistinen V.M., Hanhineva K. Mass Spectrometry-based Analysis of Whole Grain Phytochemicals. Crit. Rev. Food Sci. Nutr. 2015;57:1688–1709. doi: 10.1080/10408398.2015.1016477. PubMed DOI
De Villiers A., Venter P., Pasch H. Recent advances and trends in the liquid-chromatography-mass spectrometry analysis of flavonoids. J. Chromatogr. A. 2016;1430:16–78. doi: 10.1016/j.chroma.2015.11.077. PubMed DOI
Scalbert A., Brennan L., Fiehn O., Hankemeier T., Kristal B.S., van Ommen B., Pujos-Guillot E., Verheij E., Wishart D., Wopereis S. Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5:435–458. doi: 10.1007/s11306-009-0168-0. PubMed DOI PMC
De Vos R.C., Moco S., Lommen A., Keurentjes J.J., Bino R.J., Hall R.D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2007;2:778–791. doi: 10.1038/nprot.2007.95. PubMed DOI
Motilva M., Serra A., Macià A. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatogr. A. 2013;1292:66–82. doi: 10.1016/j.chroma.2013.01.012. PubMed DOI
Willför S.M., Smeds A.I., Holmbom B.R. Chromatographic analysis of lignans. J. Chromatogr. A. 2006;1112:64–77. doi: 10.1016/j.chroma.2005.11.054. PubMed DOI
Feliciano R.P., Mecha E., Bronze M.R., Rodriguez-Mateos A. Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. J. Chromatogr. A. 2016;1464:21–31. PubMed
Abidi S.L. Chromatographic analysis of plant sterols in foods and vegetable oils. J. Chromatogr. A. 2001;935:173–201. doi: 10.1016/S0021-9673(01)00946-3. PubMed DOI
Lerma-García M.J., Simó-Alfonso E.F., Méndez A., Lliberia J.L., Herrero-Martínez J.M. Fast separation and determination of sterols in vegetable oils by ultraperformance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection. J. Agric. Food Chem. 2010;58:2771–2776. doi: 10.1021/jf9043887. PubMed DOI
Amorim-Carrilho K.T., Cepeda A., Fente C., Regal P. Review of methods for analysis of carotenoids. Trends Anal. Chem. 2014;56:49–73. doi: 10.1016/j.trac.2013.12.011. DOI
Urpi-Sarda M., Monagas M., Khan N., Llorach R., Lamuela-Raventós R.M., Jáuregui O., Estruch R., Izquierdo-Pulido M., Andrés-Lacueva C. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2009;1216:7258–7267. doi: 10.1016/j.chroma.2009.07.058. PubMed DOI
Sang S., Lee M., Yang I., Buckley B., Yang C.S. Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun. Mass Spectrom. 2008;22:1567–1578. doi: 10.1002/rcm.3546. PubMed DOI
Hanhineva K., Keski-Rahkonen P., Lappi J., Katina K., Pekkinen J., Savolainen O., Timonen O., Paananen J., Mykkänen H., Poutanen K. The postprandial plasma rye fingerprint includes benzoxazinoid-derived phenylacetamide sulfates. J. Nutr. 2014;144:1016–1022. doi: 10.3945/jn.113.187237. PubMed DOI
Ross A.B., Svelander C., Savolainen O.I., Lind M.V., Kirwan J.P., Breton I., Godin J., Sandberg A. A high-throughput method for liquid chromatography–tandem mass spectrometry determination of plasma alkylresorcinols, biomarkers of whole grain wheat and rye intake. Anal. Biochem. 2016;499:1–7. doi: 10.1016/j.ab.2015.12.023. PubMed DOI
Sánchez-Hernández L., Castro-Puyana M., Luisa Marina M., Crego A.L. Determination of betaines in vegetable oils by capillary electrophoresis tandem mass spectrometry–application to the detection of olive oil adulteration with seed oils. Electrophoresis. 2011;32:1394–1401. doi: 10.1002/elps.201100005. PubMed DOI
Vrhovsek U., Masuero D., Gasperotti M., Franceschi P., Caputi L., Viola R., Mattivi F. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J. Agric. Food Chem. 2012;60:8831–8840. doi: 10.1021/jf2051569. PubMed DOI
Scalbert A., Brennan L., Manach C., Andres-Lacueva C., Dragsted L.O., Draper J., Rappaport S.M., van der Hooft J.J., Wishart D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014;99:1286–1308. doi: 10.3945/ajcn.113.076133. PubMed DOI
Gibbons H., O’Gorman A., Brennan L. Metabolomics as a tool in nutritional research. Curr. Opin. Lipidol. 2015;26:30–34. doi: 10.1097/MOL.0000000000000140. PubMed DOI
Rangel-Huerta O.D., Gil A. Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases. Int. J. Mol. Sci. 2016;17:2072. doi: 10.3390/ijms17122072. PubMed DOI PMC
Garcia C.J., García-Villalba R., Garrido Y., Gil M.I., Tomás-Barberán F.A. Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce. Metabolomics. 2016;12:138. doi: 10.1007/s11306-016-1082-x. DOI
Koistinen V.M., Mattila O., Katina K., Poutanen K., Aura A.M., Hanhineva K. Metabolic profiling of sourdough fermented wheat and rye bread. Sci. Rep. 2018;8:5684. doi: 10.1038/s41598-018-24149-w. PubMed DOI PMC
Zhou B., Xiao J.F., Tuli L., Ressom H.W. LC-MS-based metabolomics. Mol. BioSyst. 2012;8:470–481. doi: 10.1039/C1MB05350G. PubMed DOI PMC
Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C.S., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC
De Rijke E., Out P., Niessen W.M., Ariese F., Gooijer C., Udo A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A. 2006;1112:31–63. doi: 10.1016/j.chroma.2006.01.019. PubMed DOI
Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W., Fiehn O., Goodacre R., Griffin J.L. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC
Clifford M.N., Kirkpatrick J., Kuhnert N., Roozendaal H., Salgado P.R. LC–MS n analysis of the cis isomers of chlorogenic acids. Food Chem. 2008;106:379–385. doi: 10.1016/j.foodchem.2007.05.081. DOI
Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39. PubMed DOI
Tetko I.V., Tanchuk V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 2002;42:1136–1145. doi: 10.1021/ci025515j. PubMed DOI
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC