Interlaboratory Coverage Test on Plant Food Bioactive Compounds and their Metabolites by Mass Spectrometry-Based Untargeted Metabolomics

. 2018 Aug 24 ; 8 (3) : . [epub] 20180824

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30149593

Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.

Alkalmazott Kemia Tsz Elelmiszertudomanyi Kar Szent István Egyetem 29 43 Villanyi Street 1118 Budapest Hungary

Department of Food Science and Technology CEBAS CSIC Campus Universitario de Espinardo edf 25 30100 Murcia Spain

Department of Metabolism and Nutrition Institute of Food Science Technology and Nutrition Jose Antonio Novais 10 28040 Madrid Spain

Department of Nutrition Food Science and Gastronomy Pharmacy Faculty University of Barcelona Av Joan XXIII s n 08028 Barcelona Spain; CIBER Fragilidad y Envejecimiento Saludable Instituto de Salud Carlos 3 Barcelona Spain;

Division of Food and Nutrition Science Department of Biology and Biological Engineering Chalmers University of Technology SE 412 96 Gothenburg Sweden

INRA Human Nutrition Unit Université Clermont Auvergne F63000 Clermont Ferrand France

Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences Tuwima 10 10 748 Olsztyn Poland

Institute of Public Health and Clinical Nutrition University of Eastern Finland P O Box 1627 FI 70211 Kuopio Finland

Instituto de Biologia Experimental Tecnológica Av da República 2780 157 Oeiras Portugal

Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa Av da República 2780 157 Oeiras Portugal

Laboratory of Biotransformation Institute of Microbiology of the CAS Vídeňská 1083 CZ 142 20 Prague Czechia

Research Institute for Medicines Avenida Professor Gama Pinto 1649 003 Lisbon Portugal

Technology and Food Science Department Flanders Research Institute for Agriculture Fisheries and Food Brusselsesteenweg 370 B 9090 Melle Belgium

VTT Technical Research Centre of Finland Ltd P O Box 1000 FI 02044 VTT Espoo Finland

Zobrazit více v PubMed

Wishart D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008;19:482–493. doi: 10.1016/j.tifs.2008.03.003. DOI

Del-Castillo-Alonso M., Castagna A., Csepregi K., Hideg E., Jakab G., Jansen M.A.K., Jug T., Llorens L., Matai A., Martinez-Luescher J., et al. Environmental Factors Correlated with the Metabolite Profile of Vitis vinifera cv. Pinot Noir Berry Skins along a European Latitudinal Gradient. J. Agric. Food Chem. 2016;64:8722–8734. doi: 10.1021/acs.jafc.6b03272. PubMed DOI

Creydt M., Fischer M. Omics approaches for food authentication. Electrophoresis. 2018;39:1569–1581. doi: 10.1002/elps.201800004. PubMed DOI

Dragsted L.O., Gao Q., Scalbert A., Vergères G., Kolehmainen M., Manach C., Brennan L., Afman L.A., Wishart D.S., Andres Lacueva C., et al. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr. 2018;13:14. doi: 10.1186/s12263-018-0603-9. PubMed DOI PMC

Allwood J.W., Goodacre R. An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem. Anal. 2010;21:33–47. doi: 10.1002/pca.1187. PubMed DOI

Kaspar S., Peukert M., Svatos A., Matros A., Mock H. MALDI-imaging mass spectrometry—An emerging technique in plant biology. Proteomics. 2011;11:1840–1850. doi: 10.1002/pmic.201000756. PubMed DOI

Kueger S., Steinhauser D., Willmitzer L., Giavalisco P. High-resolution plant metabolomics: From mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 2012;70:39–50. doi: 10.1111/j.1365-313X.2012.04902.x. PubMed DOI

Wu H., Guo J., Chen S., Liu X., Zhou Y., Zhang X., Xu X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2013;72:267–291. doi: 10.1016/j.jpba.2012.09.004. PubMed DOI

Koistinen V.M., Hanhineva K. Mass Spectrometry-based Analysis of Whole Grain Phytochemicals. Crit. Rev. Food Sci. Nutr. 2015;57:1688–1709. doi: 10.1080/10408398.2015.1016477. PubMed DOI

De Villiers A., Venter P., Pasch H. Recent advances and trends in the liquid-chromatography-mass spectrometry analysis of flavonoids. J. Chromatogr. A. 2016;1430:16–78. doi: 10.1016/j.chroma.2015.11.077. PubMed DOI

Scalbert A., Brennan L., Fiehn O., Hankemeier T., Kristal B.S., van Ommen B., Pujos-Guillot E., Verheij E., Wishart D., Wopereis S. Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5:435–458. doi: 10.1007/s11306-009-0168-0. PubMed DOI PMC

De Vos R.C., Moco S., Lommen A., Keurentjes J.J., Bino R.J., Hall R.D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2007;2:778–791. doi: 10.1038/nprot.2007.95. PubMed DOI

Motilva M., Serra A., Macià A. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatogr. A. 2013;1292:66–82. doi: 10.1016/j.chroma.2013.01.012. PubMed DOI

Willför S.M., Smeds A.I., Holmbom B.R. Chromatographic analysis of lignans. J. Chromatogr. A. 2006;1112:64–77. doi: 10.1016/j.chroma.2005.11.054. PubMed DOI

Feliciano R.P., Mecha E., Bronze M.R., Rodriguez-Mateos A. Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. J. Chromatogr. A. 2016;1464:21–31. PubMed

Abidi S.L. Chromatographic analysis of plant sterols in foods and vegetable oils. J. Chromatogr. A. 2001;935:173–201. doi: 10.1016/S0021-9673(01)00946-3. PubMed DOI

Lerma-García M.J., Simó-Alfonso E.F., Méndez A., Lliberia J.L., Herrero-Martínez J.M. Fast separation and determination of sterols in vegetable oils by ultraperformance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection. J. Agric. Food Chem. 2010;58:2771–2776. doi: 10.1021/jf9043887. PubMed DOI

Amorim-Carrilho K.T., Cepeda A., Fente C., Regal P. Review of methods for analysis of carotenoids. Trends Anal. Chem. 2014;56:49–73. doi: 10.1016/j.trac.2013.12.011. DOI

Urpi-Sarda M., Monagas M., Khan N., Llorach R., Lamuela-Raventós R.M., Jáuregui O., Estruch R., Izquierdo-Pulido M., Andrés-Lacueva C. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2009;1216:7258–7267. doi: 10.1016/j.chroma.2009.07.058. PubMed DOI

Sang S., Lee M., Yang I., Buckley B., Yang C.S. Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun. Mass Spectrom. 2008;22:1567–1578. doi: 10.1002/rcm.3546. PubMed DOI

Hanhineva K., Keski-Rahkonen P., Lappi J., Katina K., Pekkinen J., Savolainen O., Timonen O., Paananen J., Mykkänen H., Poutanen K. The postprandial plasma rye fingerprint includes benzoxazinoid-derived phenylacetamide sulfates. J. Nutr. 2014;144:1016–1022. doi: 10.3945/jn.113.187237. PubMed DOI

Ross A.B., Svelander C., Savolainen O.I., Lind M.V., Kirwan J.P., Breton I., Godin J., Sandberg A. A high-throughput method for liquid chromatography–tandem mass spectrometry determination of plasma alkylresorcinols, biomarkers of whole grain wheat and rye intake. Anal. Biochem. 2016;499:1–7. doi: 10.1016/j.ab.2015.12.023. PubMed DOI

Sánchez-Hernández L., Castro-Puyana M., Luisa Marina M., Crego A.L. Determination of betaines in vegetable oils by capillary electrophoresis tandem mass spectrometry–application to the detection of olive oil adulteration with seed oils. Electrophoresis. 2011;32:1394–1401. doi: 10.1002/elps.201100005. PubMed DOI

Vrhovsek U., Masuero D., Gasperotti M., Franceschi P., Caputi L., Viola R., Mattivi F. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J. Agric. Food Chem. 2012;60:8831–8840. doi: 10.1021/jf2051569. PubMed DOI

Scalbert A., Brennan L., Manach C., Andres-Lacueva C., Dragsted L.O., Draper J., Rappaport S.M., van der Hooft J.J., Wishart D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014;99:1286–1308. doi: 10.3945/ajcn.113.076133. PubMed DOI

Gibbons H., O’Gorman A., Brennan L. Metabolomics as a tool in nutritional research. Curr. Opin. Lipidol. 2015;26:30–34. doi: 10.1097/MOL.0000000000000140. PubMed DOI

Rangel-Huerta O.D., Gil A. Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases. Int. J. Mol. Sci. 2016;17:2072. doi: 10.3390/ijms17122072. PubMed DOI PMC

Garcia C.J., García-Villalba R., Garrido Y., Gil M.I., Tomás-Barberán F.A. Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce. Metabolomics. 2016;12:138. doi: 10.1007/s11306-016-1082-x. DOI

Koistinen V.M., Mattila O., Katina K., Poutanen K., Aura A.M., Hanhineva K. Metabolic profiling of sourdough fermented wheat and rye bread. Sci. Rep. 2018;8:5684. doi: 10.1038/s41598-018-24149-w. PubMed DOI PMC

Zhou B., Xiao J.F., Tuli L., Ressom H.W. LC-MS-based metabolomics. Mol. BioSyst. 2012;8:470–481. doi: 10.1039/C1MB05350G. PubMed DOI PMC

Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C.S., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC

De Rijke E., Out P., Niessen W.M., Ariese F., Gooijer C., Udo A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A. 2006;1112:31–63. doi: 10.1016/j.chroma.2006.01.019. PubMed DOI

Sumner L.W., Amberg A., Barrett D., Beale M.H., Beger R., Daykin C.A., Fan T.W., Fiehn O., Goodacre R., Griffin J.L. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC

Clifford M.N., Kirkpatrick J., Kuhnert N., Roozendaal H., Salgado P.R. LC–MS n analysis of the cis isomers of chlorogenic acids. Food Chem. 2008;106:379–385. doi: 10.1016/j.foodchem.2007.05.081. DOI

Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39. PubMed DOI

Tetko I.V., Tanchuk V.Y. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 2002;42:1136–1145. doi: 10.1021/ci025515j. PubMed DOI

Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...