Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites

. 2017 Oct 25 ; 18 (11) : . [epub] 20171025

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29068411

Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3'-O-sulfate, quercetin-4'-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3'-di-O-sulfate, quercetin-7,4'-di-O-sulfate, and quercetin-3',4'-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⁺) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3'-O-sulfate was more efficient than quercetin-4'-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4'-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.

Zobrazit více v PubMed

Russo M., Spagnuolo C., Tedesco I., Bilotto S., Russo G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012;83:6–15. doi: 10.1016/j.bcp.2011.08.010. PubMed DOI

Valentová K., Vrba J., Bancířová M., Ulrichová J., Křen V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014;68:267–282. doi: 10.1016/j.fct.2014.03.018. PubMed DOI

Duenas M., Gonzalez-Manzano S., Surco-Laos F., Gonzalez-Paramas A., Santos-Buelga C. Characterization of sulfated quercetin and epicatechin metabolites. J. Agric. Food Chem. 2012;60:3592–3598. doi: 10.1021/jf2050203. PubMed DOI

Serra A., Macia A., Romero M.P., Reguant J., Ortega N., Motilva M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012;130:383–393. doi: 10.1016/j.foodchem.2011.07.055. DOI

Murota K., Matsuda N., Kashino Y., Fujikura Y., Nakamura T., Kato Y., Shimizu R., Okuyama S., Tanaka H., Koda T., et al. α-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 2010;501:91–97. doi: 10.1016/j.abb.2010.06.036. PubMed DOI

Barron D., Ibrahim R.K. Synthesis of flavonoid sulfates: 1. Stepwise sulfation of position-3, position-7, and position-4′ using N,N′-dicyclohexylcarbodiimide and tetrabutylammonium hydrogen sulfate. Tetrahedron. 1987;43:5197–5202. doi: 10.1016/S0040-4020(01)87695-X. DOI

Jones D.J., Jukes-Jones R., Verschoyle R.D., Farmer P.B., Gescher A. A synthetic approach to the generation of quercetin sulfates and the detection of quercetin 3’-O-sulfate as a urinary metabolite in the rat. Bioorg. Med. Chem. 2005;13:6727–6731. doi: 10.1016/j.bmc.2005.07.021. PubMed DOI

Koizumi M., Shimizu M., Kobashi K. Enzymatic sulfation of quercetin by arylsulfotransferase from a human intestinal bacterium. Chem. Pharm. Bull. 1990;38:794–796. doi: 10.1248/cpb.38.794. PubMed DOI

Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartová K., Fuksová K., Kuzma M., Cvačka J., Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B-Enzym. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI

Van der Horst M.A., Hartog A.F., El Morabet R., Marais A., Kircz M., Wever R. Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur. J. Org. Chem. 2015:534–541. doi: 10.1002/ejoc.201402875. DOI

Purchartová K., Valentová K., Pelantová H., Marhol P., Cvačka J., Havlíček L., Křenková A., Vavříková E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI

Hartog A.F., Wever R. Sulfation made easy: A new versatile donor for enzymatic sulfation by a bacterial arylsulfotransferase. J. Mol. Catal. B-Enzym. 2016;129:43–46. doi: 10.1016/j.molcatb.2016.04.007. DOI

Simpson L.S., Widlanski T.S. A comprehensive approach to the synthesis of sulfate esters. J. Am. Chem. Soc. 2006;128:1605–1610. doi: 10.1021/ja056086j. PubMed DOI

Barron D., Colebrook L.D., Ibrahim R.K. An equimolar mixture of quercetin 3-sulfate and patuletin 3-sulfate from Flaveria chloraefolia. Phytochemistry. 1986;25:1719–1721. doi: 10.1016/S0031-9422(00)81243-1. DOI

Ward R.S. Carbon-13 NMR of flavonoids (studies in organic chemistry series, no. 39) In: Agrawal P.K., editor. Magnetic Resonance in Chemistry. Volume 28. John Wiley & Sons, Ltd.; Elsevier, Amsterdam: 1990. pp. 562–563.

Purchartová K., Engels L., Marhol P., Šulc M., Kuzma M., Slámová K., Elling L., Křen V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI

Barron D., Ibrahim R.K. Synthesis of flavonoid sulfates: 3. Synthesis of 3′,4′-ortho disulfates using sulfur trioxide-trimethylamine complex, and of 3′-sulfates using aryl sulfatase. Z. Naturforsch. C. 1988;43:631–635. doi: 10.1515/znc-1988-9-1002. DOI

Duenas M., Surco-Laos F., Gonzalez-Manzano S., Gonzalez-Paramas A.M., Santos-Buelga C. Antioxidant properties of major metabolites of quercetin. Eur. Food Res. Technol. 2011;232:103–111. doi: 10.1007/s00217-010-1363-y. DOI

Vavříková E., Langschwager F., Jezova-Kalachova L., Křenková A., Mikulová B., Kuzma M., Křen V., Valentová K. Isoquercitrin esters with mono- or dicarboxylic acids: Enzymatic preparation and properties. Int. J. Mol. Sci. 2016;17:899. doi: 10.3390/ijms17060899. PubMed DOI PMC

Wiczkowski W., Szawara-Nowak D., Topolska J., Olejarz K., Zielinski H., Piskula M.K. Metabolites of dietary quercetin: Profile, isolation, identification, and antioxidant capacity. J. Funct. Foods. 2014;11:121–129. doi: 10.1016/j.jff.2014.09.013. DOI

Di Meo F., Lemaur V., Cornil J., Lazzaroni R., Duroux J.L., Olivier Y., Trouillas P. Free radical scavenging by natural polyphenols: Atom versus electron transfer. J. Phys. Chem. A. 2013;117:2082–2092. doi: 10.1021/jp3116319. PubMed DOI

Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem. 2006;97:679–688. doi: 10.1016/j.foodchem.2005.05.042. DOI

Košinová P., Berka K., Wykes M., Otyepka M., Trouillas P. Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: Implication for their lipid-peroxidation inhibition. J. Phys. Chem. B. 2012;116:1309–1318. doi: 10.1021/jp208731g. PubMed DOI

Van der Horst M.A., van Lieshout J.F.T., Bury A., Hartog A.F., Wever R. Sulfation of various alcoholic groups by an arylsulfate sulfotransferase from Desulfitobacterium hafniense and synthesis of estradiol sulfate. Adv. Synth. Catal. 2012;354:3501–3508. doi: 10.1002/adsc.201200564. DOI

Wong-Ekkabut J., Xu Z.T., Triampo W., Tang I.M., Tieleman D.P., Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophys. J. 2007;93:4225–4236. doi: 10.1529/biophysj.107.112565. PubMed DOI PMC

Velioglu Y.S., Mazza G., Gao L., Oomah B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agr. Food Chem. 1998;46:4113–4117. doi: 10.1021/jf9801973. DOI

Gavezzotti P., Vavříková E., Valentová K., Fronza G., Kudanga T., Kuzma M., Riva S., Biedermann D., Křen V. Enzymatic oxidative dimerization of silymarin flavonolignans. J. Mol. Catal. B-Enzym. 2014;109:24–30. doi: 10.1016/j.molcatb.2014.07.012. DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Vavříková E., Vacek J., Valentová K., Marhol P., Ulrichová J., Kuzma M., Křen V. Chemo-enzymatic synthesis of silybin and 2,3-dehydrosilybin dimers. Molecules. 2014;19:4115–4134. doi: 10.3390/molecules19044115. PubMed DOI PMC

Joyeux M., Mortier F., Fleurentin J. Screening of antiradical, antilipoperoxidant and hepatoprotective effects of 9 plant-extracts used in caribbean folk medicine. Phytother. Res. 1995;9:228–230. doi: 10.1002/ptr.2650090316. DOI

Fogliano V., Verde V., Randazzo G., Ritieni A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999;47:1035–1040. doi: 10.1021/jf980496s. PubMed DOI

Jones A., Pravadali-Cekic S., Dennis G.R., Bashir R., Mahon P.J., Shalliker R.A. Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal. Chim. Acta. 2017;967:93–101. doi: 10.1016/j.aca.2017.02.032. PubMed DOI

Wang J.M., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI

Duan Y., Wu C., Chowdhury S., Lee M.C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003;24:1999–2012. doi: 10.1002/jcc.10349. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 09, Revision A.02. Gaussian, Inc.; Wallingford, CT, USA: 2016.

Dupradeau F.Y., Pigache A., Zaffran T., Savineau C., Lelong R., Grivel N., Lelong D., Rosanski W., Cieplak P. The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 2010;12:7821–7839. doi: 10.1039/c0cp00111b. PubMed DOI PMC

Dickson C.J., Madej B.D., Skjevik A.A., Betz R.M., Teigen K., Gould I.R., Walker R.C. Lipid14: The amber lipid force field. J. Chem. Theory Comput. 2014;10:865–879. doi: 10.1021/ct4010307. PubMed DOI PMC

Case D.A., Cerutti D.S., Cheatham T.E.I., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Greene D., Homeyer N., et al. AMBER 2017. University of California; San Francisco, CA, USA: 2017.

Price D.J., Brooks C.L., III A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 2004;121:10096–10103. doi: 10.1063/1.1808117. PubMed DOI

Jo S., Kim T., Iyer V.G., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Salomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package. Wires Comput. Mol. Sci. 2013;3:198–210. doi: 10.1002/wcms.1121. DOI

Roe D.R., Cheatham T.E., III Ptraj and cpptraj: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace