Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27338349
PubMed Central
PMC4926433
DOI
10.3390/ijms17060899
PII: ijms17060899
Knihovny.cz E-zdroje
- Klíčová slova
- DPPH, Novozym 435, antioxidant activity, fatty acid, isoquercitrin, lipase, lipoperoxidation, log P, quercetin,
- MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- estery chemická syntéza chemie farmakologie MeSH
- katalýza MeSH
- kyseliny dikarboxylové chemie MeSH
- kyseliny karboxylové chemie MeSH
- molekulární struktura MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- quercetin analogy a deriváty chemická syntéza chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- estery MeSH
- isoquercitrin MeSH Prohlížeč
- kyseliny dikarboxylové MeSH
- kyseliny karboxylové MeSH
- quercetin MeSH
A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.
Zobrazit více v PubMed
Shahidi F., Janitha P.K., Wanasundara P.D. Phenolic antioxidants. Crit. Rev. Food Sci. 1992;32:67–103. doi: 10.1080/10408399209527581. PubMed DOI
Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002;13:572–584. doi: 10.1016/S0955-2863(02)00208-5. PubMed DOI
Quideau S., Deffieux D., Douat-Casassus C., Pouysegu L. Plant polyphenols: Chemical properties, biological activities and synthesis. Angew. Chem. Int. Ed. 2011;50:586–621. doi: 10.1002/anie.201000044. PubMed DOI
Hollman P.C.H., van Trijp J.M.P., Buysman M.N.C.P., Van der Gaag M.S., Mengelers M.J.B., de Vries J.H.M., Katan M.B. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997;418:152–156. doi: 10.1016/S0014-5793(97)01367-7. PubMed DOI
D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256–271. doi: 10.1016/j.fitote.2015.09.018. PubMed DOI
Boots A.W., Haenen G.R.M.M., Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI
Okamoto T. Safety of quercetin for clinical application (Review) Int. J. Mol. Med. 2005;16:275–278. doi: 10.3892/ijmm.16.2.275. PubMed DOI
Dajas F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol. 2012;143:383–396. doi: 10.1016/j.jep.2012.07.005. PubMed DOI
Harwood M., Danielewska-Nikiel B., Borzelleca J.F., Flamm G.W., Williams G.M., Lines T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcino genic properties. Food Chem. Toxicol. 2007;45:2179–2205. doi: 10.1016/j.fct.2007.05.015. PubMed DOI
Sharma S., Ali A., Ali J., Sahni J.K., Baboota S. Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opin. Investig. Drug. 2013;22:1063–1079. doi: 10.1517/13543784.2013.805744. PubMed DOI
Valentová K., Vrba J., Bancířová M., Ulrichová J., Křen V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014;68:267–282. doi: 10.1016/j.fct.2014.03.018. PubMed DOI
Gerstorferová D., Fliedrová B., Halada P., Marhol P., Křen V., Weignerová L. Recombinant α-l-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process Biochem. 2012;47:828–835. doi: 10.1016/j.procbio.2012.02.014. DOI
Chebil L., Humeau C., Anthoni J., Dehez F., Engasser J.M., Ghoul M. Solubility of flavonoids in organic solvents. J. Chem. Eng. Data. 2007;52:1552–1556. doi: 10.1021/je7001094. DOI
Chebil L., Bouroukba M., Gaiani C., Charbonel C., Khaldi M., Engasser J.M., Ghoul M. Elucidation of the kinetic behavior of quercetin, isoquercitrin, and rutin solubility by physicochemical and thermodynamic investigation. Ind. Eng. Chem. Res. 2013;52:1464–1470. doi: 10.1021/ie3029202. DOI
Makino T., Shimizu R., Kanemaru M., Suzuki Y., Moriwaki M., Mizukami H. Enzymatically modified isoquercitrin, α-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol. Pharm. Bull. 2009;32:2034–2040. doi: 10.1248/bpb.32.2034. PubMed DOI
Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI
Danieli B., Bertario A. Chemoenzymatic synthesis of 6’’-O-(3-arylprop-2-enoyl) derivatives of the flavonol glucoside isoquercitrin. Helv. Chim. Acta. 1993;76:2981–2991. doi: 10.1002/hlca.19930760823. DOI
Chebil L., Humeau C., Falcimaigne A., Engasser J.M., Ghoul M. Enzymatic acylation of flavonoids. Process Biochem. 2006;41:2237–2251. doi: 10.1016/j.procbio.2006.05.027. DOI
Ardhaoui M., Falcimaigne A., Engasser J.M., Moussou P., Pauly G., Ghoul M. Acylation of natural flavonoids using lipase of Candida antarctica as biocatalyst. J. Mol. Catal. B-Enzym. 2004;29:63–67. doi: 10.1016/j.molcatb.2004.02.013. DOI
Chebil L., Anthoni J., Humeau C., Gerardin C., Engasser J.M., Ghoul M. Enzymatic acylation of flavonoids: Effect of the nature of the substrate, origin of lipase and operating conditions on conversion yield and regioselectivity. J. Agric. Food Chem. 2007;55:9496–9502. doi: 10.1021/jf071943j. PubMed DOI
Salem J.H., Humeau C., Chevalot I., Harscoat-Schiavo C., Vanderesse R., Blanchard F., Fick M. Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochem. 2010;45:382–389. doi: 10.1016/j.procbio.2009.10.012. DOI
Fabre J., Betbeder D., Paul F., Monsan P., Perie J. Versatile enzymatic diacid ester: Synthesis of butyl delta-d-glucopyranoside. Tetrahedron. 1993;49:10877–10882. doi: 10.1016/S0040-4020(01)80240-4. DOI
McCabe R.W., Taylor A. An investigation of the acyl-binding site of Candida antarctica lipase B. Enzyme Microb. Technol. 2004;35:393–398. doi: 10.1016/j.enzmictec.2004.04.019. DOI
Ottolina G., Carrea G., Riva S. Regioselective enzymatic preparation of hemisuccinates of polyhydroxylated steroids. Biocatalysis. 1991;5:131–136. doi: 10.3109/10242429109014861. DOI
Bassanini I., Hult K., Riva S. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers. Beilstein J. Org. Chem. 2015;11:1583–1595. doi: 10.3762/bjoc.11.174. PubMed DOI PMC
Magrone P., Cavallo F., Panzeri W., Passarella D., Riva S. Exploiting enzymatic regioselectivity: A facile methodology for the synthesis of polyhydroxylated hybrid compounds. Org. Biomol. Chem. 2010;8:5583–5590. doi: 10.1039/c0ob00304b. PubMed DOI
Theodosiou E., Loutrari H., Stamatis H., Roussos C., Kolisis F.N. Biocatalytic synthesis and antitumor activities of novel silybin acylated derivatives with dicarboxylic acids. New Biotechnol. 2011;28:342–348. doi: 10.1016/j.nbt.2011.01.006. PubMed DOI
Murota K., Matsuda N., Kashino Y., Fujikura Y., Nakamura T., Kato Y., Shimizu R., Okuyama S., Tanaka H., Koda T., et al. α-Oligoglucosylation of a sugar moiety enhances the biovailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 2010;501:91–97. doi: 10.1016/j.abb.2010.06.036. PubMed DOI
Huang D.J., Ou B.X., Prior R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c. PubMed DOI
Ziaullah, Bhullar K.S., Warnakulasuriya S.N., Rupasinghe H.P.V. Biocatalytic synthesis, structural elucidation, antioxidant capacity and tyrosinase inhibition activity of long chain fatty acid acylated derivatives of phloridzin and isoquercitrin. Bioorg. Med. Chem. 2013;21:684–692. doi: 10.1016/j.bmc.2012.11.034. PubMed DOI
Košinová P., Berka K., Wykes M., Otyepka M., Trouillas P. Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: Implication for their lipid-peroxidation inhibition. J. Phys. Chem. B. 2011;116:1309–1318. doi: 10.1021/jp208731g. PubMed DOI
Mellou F., Lazari D., Skaltsa H., Tselepis A.D., Kolisis E., Stamatis H. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J. Biotechnol. 2005;116:295–304. doi: 10.1016/j.jbiotec.2004.12.002. PubMed DOI
Weignerová L., Marhol P., Gerstorferová D., Křen V. Preparatory production of quercetin-3-beta-d-glucopyranoside using alkali-tolerant thermostable α-l-rhamnosidase from Aspergillus terreus. Biores. Technol. 2012;115:222–227. doi: 10.1016/j.biortech.2011.08.029. PubMed DOI
Velioglu Y.S., Mazza G., Gao L., Oomah B.D. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem. 1998;46:4113–4117. doi: 10.1021/jf9801973. DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Deby C., Magotteaux G. Essential fatty acids and antioxidizing substances in tissues of mouse. C. R. Séances Soc. Biol. Fil. 1970;164:2675–2681. PubMed
Joyeux M., Mortier F., Fleurentin J. Screening of antiradical, antilipoperoxidant and hepatoprotective effects of 9 plant-extracts used in caribbean folk medicine. Phytother. Res. 1995;9:228–230. doi: 10.1002/ptr.2650090316. DOI
Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties
Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites
Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues