Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00043S
Czech Science Foundation
NU21-02-00135
Ministry of Health
PubMed
35628552
PubMed Central
PMC9147169
DOI
10.3390/ijms23105743
PII: ijms23105743
Knihovny.cz E-zdroje
- Klíčová slova
- Desulfitobacterium hafniense, HPLC analysis, aryl sulfotransferase, flavonoids, phenolic acid, polyphenols, sulfates,
- MeSH
- fenoly analýza MeSH
- flavonoidy analýza MeSH
- flavonolignany * MeSH
- sírany * MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly MeSH
- flavonoidy MeSH
- flavonolignany * MeSH
- sírany * MeSH
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.
Zobrazit více v PubMed
Kerimi A., Williamson G. At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Mol. Nutr. Food Res. 2016;60:1770–1788. doi: 10.1002/mnfr.201500940. PubMed DOI PMC
Guo X., Li K., Guo A., Li E. Intestinal absorption and distribution of naringin, hesperidin, and their metabolites in mice. J. Funct. Foods. 2020;74:104158. doi: 10.1016/j.jff.2020.104158. DOI
Křen V., Marhol P., Purchartová K., Gabrielová E., Modriansky M. Biotransformation of Silybin and its Congeners. Curr. Drug Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI
Correia-da-Silva M., Sousa E., Pinto M.M.M. Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration. Med. Res. Rev. 2014;34:223–279. doi: 10.1002/med.21282. PubMed DOI
Chapman E., Best M.D., Hanson S.R., Wong C.-H. Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. 2004;43:3526–3548. doi: 10.1002/anie.200300631. PubMed DOI
Hartog A.F., Wever R. Substrate engineering and its synthetic utility in the sulfation of primary aliphatic alcohol groups by a bacterial arylsulfotransferase. Adv. Synth. Catal. 2015;357:2629–2632. doi: 10.1002/adsc.201500482. DOI
Hartog A.F., Wever R. Sulfation made easy: A new versatile donor for enzymatic sulfation by a bacterial arylsulfotransferase. J. Mol. Catal. B-Enzym. 2016;129:43–46. doi: 10.1016/j.molcatb.2016.04.007. DOI
Káňová K., Petrásková L., Pelantová H., Rybková Z., Malachová K., Cvačka J., Křen V., Valentová K. Sulfated metabolites of luteolin, myricetin, and ampelopsin: Chemoenzymatic preparation and biophysical properties. J. Agric. Food Chem. 2020;68:11197–11206. doi: 10.1021/acs.jafc.0c03997. PubMed DOI
Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartová K., Fuksová K., Kuzma M., Cvačka J., Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B-Enzym. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI
Purchartová K., Engels L., Marhol P., Šulc M., Kuzma M., Slámová K., Elling L., Křen V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI
Purchartová K., Valentová K., Pelantová H., Marhol P., Cvačka J., Havlíček L., Křenková A., Vavříková E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI
Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C.S., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P., et al. Chemoenzymatic preparation and biophysical properties of sulfated quercetin metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC
Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Goyon A., Yehl P., Zhang K. Characterization of therapeutic oligonucleotides by liquid chromatography. J. Pharm. Biomed. Anal. 2020;182:113105. doi: 10.1016/j.jpba.2020.113105. PubMed DOI
Van der Horst M.A., Hartog A.F., El Morabet R., Marais A., Kircz M., Wever R. Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur. J. Org. Chem. 2015;2015:534–541. doi: 10.1002/ejoc.201402875. DOI
Banoglu E., King R.S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug. Metab. Pharmacokinet. 2002;27:135–140. doi: 10.1007/BF03190428. PubMed DOI PMC
Sarıbaş A.S., Mobasseri A., Pristatsky P., Chen X., Barthelson R., Hakes D., Wang J. Production of N-sulfated polysaccharides using yeast-expressed N-deacetylase/N-sulfotransferase-1 (NDST-1) Glycobiology. 2004;14:1217–1228. doi: 10.1093/glycob/cwh129. PubMed DOI
Ji Y., Islam S., Mertens A.M., Sauer D.F., Dhoke G.V., Jakob F., Schwaneberg U. Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Appl. Microbiol. Biotechnol. 2019;103:3761–3771. doi: 10.1007/s00253-019-09688-0. PubMed DOI
Roubalová L., Purchartová K., Papoušková B., Vacek J., Křen V., Ulrichová J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI
Mozhaev V.V., Khmelnitsky Y.L., Sanchez-Riera F., Maurina-Brunker J., Rosson R.A., Grund A.D. Arylsulfotransferase from Clostridium innocuum—A new enzyme catalyst for sulfation of phenol-containing compounds. Biotechnol. Bioeng. 2002;78:567–575. doi: 10.1002/bit.10229. PubMed DOI
Begines P., Biedermann D., Valentová K., Petrásková L., Pelantová H., Maya I., Fernández-Bolaños J.G., Křen V. Chemoenzymatic synthesis and radical scavenging of sulfated hydroxytyrosol, tyrosol, and acetylated derivatives. J. Agric. Food Chem. 2019;67:7281–7288. doi: 10.1021/acs.jafc.9b01065. PubMed DOI
Islam S., Laaf D., Infanzón B., Pelantová H., Davari M.D., Jakob F., Křen V., Elling L., Schwaneberg U. KnowVolution campaign of an aryl sulfotransferase increases activity toward cellobiose. Chem. Eur. J. 2018;24:17117–17124. doi: 10.1002/chem.201803729. PubMed DOI
Jones D.J., Jukes-Jones R., Verschoyle R.D., Farmer P.B., Gescher A. A synthetic approach to the generation of quercetin sulfates and the detection of quercetin 3′-O-sulfate as a urinary metabolite in the rat. Bioorg. Med. Chem. 2005;13:6727–6731. doi: 10.1016/j.bmc.2005.07.021. PubMed DOI
Dueñas M., González-Manzano S., Surco-Laos F., González-Paramas A., Santos-Buelga C. Characterization of sulfated quercetin and epicatechin metabolites. J. Agric. Food Chem. 2012;60:3592–3598. doi: 10.1021/jf2050203. PubMed DOI
Fenclova M., Novakova A., Viktorova J., Jonatova P., Dzuman Z., Ruml T., Kren V., Hajslova J., Vitek L., Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci. Rep. 2019;9:11118. doi: 10.1038/s41598-019-47250-0. PubMed DOI PMC
Graf T.N., Cech N.B., Polyak S.J., Oberlies N.H. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts. J. Pharm. Biomed. Anal. 2016;126:26–33. doi: 10.1016/j.jpba.2016.04.028. PubMed DOI PMC
Petrásková L., Káňová K., Biedermann D., Křen V., Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC
Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI