Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis

. 2022 May 20 ; 23 (10) : . [epub] 20220520

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35628552

Grantová podpora
19-00043S Czech Science Foundation
NU21-02-00135 Ministry of Health

Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.

Zobrazit více v PubMed

Kerimi A., Williamson G. At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Mol. Nutr. Food Res. 2016;60:1770–1788. doi: 10.1002/mnfr.201500940. PubMed DOI PMC

Guo X., Li K., Guo A., Li E. Intestinal absorption and distribution of naringin, hesperidin, and their metabolites in mice. J. Funct. Foods. 2020;74:104158. doi: 10.1016/j.jff.2020.104158. DOI

Křen V., Marhol P., Purchartová K., Gabrielová E., Modriansky M. Biotransformation of Silybin and its Congeners. Curr. Drug Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI

Correia-da-Silva M., Sousa E., Pinto M.M.M. Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration. Med. Res. Rev. 2014;34:223–279. doi: 10.1002/med.21282. PubMed DOI

Chapman E., Best M.D., Hanson S.R., Wong C.-H. Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed. 2004;43:3526–3548. doi: 10.1002/anie.200300631. PubMed DOI

Hartog A.F., Wever R. Substrate engineering and its synthetic utility in the sulfation of primary aliphatic alcohol groups by a bacterial arylsulfotransferase. Adv. Synth. Catal. 2015;357:2629–2632. doi: 10.1002/adsc.201500482. DOI

Hartog A.F., Wever R. Sulfation made easy: A new versatile donor for enzymatic sulfation by a bacterial arylsulfotransferase. J. Mol. Catal. B-Enzym. 2016;129:43–46. doi: 10.1016/j.molcatb.2016.04.007. DOI

Káňová K., Petrásková L., Pelantová H., Rybková Z., Malachová K., Cvačka J., Křen V., Valentová K. Sulfated metabolites of luteolin, myricetin, and ampelopsin: Chemoenzymatic preparation and biophysical properties. J. Agric. Food Chem. 2020;68:11197–11206. doi: 10.1021/acs.jafc.0c03997. PubMed DOI

Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartová K., Fuksová K., Kuzma M., Cvačka J., Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B-Enzym. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI

Purchartová K., Engels L., Marhol P., Šulc M., Kuzma M., Slámová K., Elling L., Křen V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biotechnol. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI

Purchartová K., Valentová K., Pelantová H., Marhol P., Cvačka J., Havlíček L., Křenková A., Vavříková E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI

Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C.S., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P., et al. Chemoenzymatic preparation and biophysical properties of sulfated quercetin metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC

Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Goyon A., Yehl P., Zhang K. Characterization of therapeutic oligonucleotides by liquid chromatography. J. Pharm. Biomed. Anal. 2020;182:113105. doi: 10.1016/j.jpba.2020.113105. PubMed DOI

Van der Horst M.A., Hartog A.F., El Morabet R., Marais A., Kircz M., Wever R. Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur. J. Org. Chem. 2015;2015:534–541. doi: 10.1002/ejoc.201402875. DOI

Banoglu E., King R.S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug. Metab. Pharmacokinet. 2002;27:135–140. doi: 10.1007/BF03190428. PubMed DOI PMC

Sarıbaş A.S., Mobasseri A., Pristatsky P., Chen X., Barthelson R., Hakes D., Wang J. Production of N-sulfated polysaccharides using yeast-expressed N-deacetylase/N-sulfotransferase-1 (NDST-1) Glycobiology. 2004;14:1217–1228. doi: 10.1093/glycob/cwh129. PubMed DOI

Ji Y., Islam S., Mertens A.M., Sauer D.F., Dhoke G.V., Jakob F., Schwaneberg U. Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Appl. Microbiol. Biotechnol. 2019;103:3761–3771. doi: 10.1007/s00253-019-09688-0. PubMed DOI

Roubalová L., Purchartová K., Papoušková B., Vacek J., Křen V., Ulrichová J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI

Mozhaev V.V., Khmelnitsky Y.L., Sanchez-Riera F., Maurina-Brunker J., Rosson R.A., Grund A.D. Arylsulfotransferase from Clostridium innocuum—A new enzyme catalyst for sulfation of phenol-containing compounds. Biotechnol. Bioeng. 2002;78:567–575. doi: 10.1002/bit.10229. PubMed DOI

Begines P., Biedermann D., Valentová K., Petrásková L., Pelantová H., Maya I., Fernández-Bolaños J.G., Křen V. Chemoenzymatic synthesis and radical scavenging of sulfated hydroxytyrosol, tyrosol, and acetylated derivatives. J. Agric. Food Chem. 2019;67:7281–7288. doi: 10.1021/acs.jafc.9b01065. PubMed DOI

Islam S., Laaf D., Infanzón B., Pelantová H., Davari M.D., Jakob F., Křen V., Elling L., Schwaneberg U. KnowVolution campaign of an aryl sulfotransferase increases activity toward cellobiose. Chem. Eur. J. 2018;24:17117–17124. doi: 10.1002/chem.201803729. PubMed DOI

Jones D.J., Jukes-Jones R., Verschoyle R.D., Farmer P.B., Gescher A. A synthetic approach to the generation of quercetin sulfates and the detection of quercetin 3′-O-sulfate as a urinary metabolite in the rat. Bioorg. Med. Chem. 2005;13:6727–6731. doi: 10.1016/j.bmc.2005.07.021. PubMed DOI

Dueñas M., González-Manzano S., Surco-Laos F., González-Paramas A., Santos-Buelga C. Characterization of sulfated quercetin and epicatechin metabolites. J. Agric. Food Chem. 2012;60:3592–3598. doi: 10.1021/jf2050203. PubMed DOI

Fenclova M., Novakova A., Viktorova J., Jonatova P., Dzuman Z., Ruml T., Kren V., Hajslova J., Vitek L., Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci. Rep. 2019;9:11118. doi: 10.1038/s41598-019-47250-0. PubMed DOI PMC

Graf T.N., Cech N.B., Polyak S.J., Oberlies N.H. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts. J. Pharm. Biomed. Anal. 2016;126:26–33. doi: 10.1016/j.jpba.2016.04.028. PubMed DOI PMC

Petrásková L., Káňová K., Biedermann D., Křen V., Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...