Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-00551S
Czech Science Foundation
LTC20070
Ministry of Education Youth and Sports
COST Action CA17104 <STRATAGEM>
European Cooperation in Science and Technology
PubMed
36499444
PubMed Central
PMC9738062
DOI
10.3390/ijms232315121
PII: ijms232315121
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, biological activity, flavonoids, flavonolignans, halogenation, multidrug resistance,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria MeSH
- biofilmy MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- Pseudomonas aeruginosa MeSH
- quorum sensing MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
A library of previously unknown halogenated derivatives of flavonolignans (silybins A and B, 2,3-dehydrosilybin, silychristin A, and 2,3-dehydrosilychristin A) was prepared. The effect of halogenation on the biological activity of flavonolignans was investigated. Halogenated derivatives had a significant effect on bacteria. All prepared derivatives inhibited the AI-2 type of bacterial communication (quorum sensing) at concentrations below 10 µM. All prepared compounds also inhibited the adhesion of bacteria (Staphyloccocus aureus and Pseudomonas aeruginosa) to the surface, preventing biofilm formation. These two effects indicate that the halogenated derivatives are promising antibacterial agents. Moreover, these derivatives acted synergistically with antibiotics and reduced the viability of antibiotic-resistant S. aureus. Some flavonolignans were able to reverse the resistant phenotype to a sensitive one, implying that they modulate antibiotic resistance.
Zobrazit více v PubMed
Li C., La M.P., Tang H., Pan W.H., Sun P., Krohn K., Yi Y.H., Li L., Zhang W. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg. Med. Chem. Lett. 2012;22:4368–4372. doi: 10.1016/j.bmcl.2012.05.001. PubMed DOI
Singh A.J., Dattelbaum J.D., Field J.J., Smart Z., Woolly E.F., Barber J.M., Heathcott R., Miller J.H., Northcote P.T. Structurally diverse hamigerans from the New Zealand marine sponge Hamigera tarangaensis: NMR-directed isolation, structure elucidation and antifungal activity. Org. Biomol. Chem. 2013;11:8041–8051. doi: 10.1039/c3ob41305e. PubMed DOI
Smitha D., Kumar M.M.K., Ramana H., Rao D.V. Rubrolide R: A new furanone metabolite from the ascidian Synoicum of the Indian Ocean. Nat. Prod. Res. 2014;28:12–17. doi: 10.1080/14786419.2013.827194. PubMed DOI
Parker W.B., Cheng Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther. 1990;48:381–395. doi: 10.1016/0163-7258(90)90056-8. PubMed DOI
Senderowicz A.M. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials. Investig. New Drugs. 1999;17:313–320. doi: 10.1023/A:1006353008903. PubMed DOI
Deep A., Marwaha R.K., Marwaha M.G., Jyoti, Nandal R., Sharma A.K. Flavopiridol as cyclin dependent kinase (CDK) inhibitor: A review. New J. Chem. 2018;42:18500–18507. doi: 10.1039/C8NJ04306J. DOI
Naderi G.A., Asgary S., Sarraf-Zadegan N., Shirvany H. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell Biochem. 2003;246:193–196. doi: 10.1023/A:1023483223842. PubMed DOI
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Křen V., Valentová K. Silybin and its congeners: From traditional medicine to molecular effects. Nat. Prod. Rep. 2022;39:1264–1281. doi: 10.1039/D2NP00013J. PubMed DOI
Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI
Valentová K., Biedermann D., Křen V. 2,3-Dehydroderivatives of silymarin flavonolignans: Prospective natural compounds for the prevention of chronic diseases. Proceedings. 2019;11:21. doi: 10.3390/proceedings2019011021. DOI
Holasová K., Křížkovská B., Hoang L., Dobiasová S., Lipov J., Macek T., Křen V., Valentová K., Ruml T., Viktorová J. Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomed. Pharmacother. 2022;149:112806. doi: 10.1016/j.biopha.2022.112806. PubMed DOI
Karimova E., Baltina L., Spirikhin L., Gabbasov T., Orshanskaya Y., Zarubaev V. Synthesis and antiviral activity of quercetin brominated derivatives. Nat. Prod. Commun. 2015;10:1565–1568. doi: 10.1177/1934578X1501000920. PubMed DOI
Pan G., Yang K., Ma Y., Zhao X., Lu K., Yu P. Synthesis of 6- or 8-bromo flavonoids by regioselective mono-bromination and deprotection protocol from flavonoid alkyl ethers. Bull. Korean Chem. Soc. 2015;36:1460–1466. doi: 10.1002/bkcs.10286. DOI
Kiehlmann E., Szczepina M.G. Epimerization, transacylation and bromination of dihydroquercetin acetates; synthesis of 8-bromodihydroquercetin. Cent. Eur. J. Chem. 2011;9:492–498. doi: 10.2478/s11532-011-0032-8. DOI
Hurtová M., Biedermann D., Kuzma M., Křen V. Mild and selective method of bromination of flavonoids. J. Nat. Prod. 2020;83:3324–3331. doi: 10.1021/acs.jnatprod.0c00655. PubMed DOI
Binsack R., Boersma B.J., Patel R.P., Kirk M., White C.R., Darley-Usmar V., Barnes S., Zhou F., Parks D.A. Enhanced antioxidant activity after chlorination of quercetin by hypochlorous acid. Alcohol. Clin. Exp. Res. 2001;25:434–443. doi: 10.1111/j.1530-0277.2001.tb02232.x. PubMed DOI
Freitas M., Ribeiro D., Tome S.M., Silva A.M., Fernandes E. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur. J. Med. Chem. 2014;86:153–164. doi: 10.1016/j.ejmech.2014.08.035. PubMed DOI
Lu K., Chu J., Wang H., Fu X., Quan D., Ding H., Yao Q., Yu P. Regioselective iodination of flavonoids by N-iodosuccinimide under neutral conditions. Tetrahedron Lett. 2013;54:6345–6348. doi: 10.1016/j.tetlet.2013.09.051. DOI
Pérez M., Ruiz D., Autino J., Sathicq A., Romanelli G. A very simple solvent-free method for the synthesis of 2-arylchromones using KHSO4 as a recyclable catalyst. Comptes Rendus Chim. 2016;19:551–555. doi: 10.1016/j.crci.2016.02.014. DOI
Zhang J.W., Yang W.W., Chen L.L., Chen P., Wang Y.B., Chen D.Y. An efficient tandem synthesis of chromones from o-bromoaryl ynones and benzaldehyde oxime. Org. Biomol. Chem. 2019;17:7461–7467. doi: 10.1039/C9OB01387C. PubMed DOI
Tao T., He C., Deng J., Huang Y., Su Q., Peng M., Yi M., Darko K.O., Zou H., Yang X. A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3′,4′-O-pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway. Oncotarget. 2017;8:71657–71671. doi: 10.18632/oncotarget.17799. PubMed DOI PMC
Proenca C., Ribeiro D., Soares T., Tome S.M., Silva A.M.S., Lima J., Fernandes E., Freitas M. Chlorinated flavonoids modulate the inflammatory process in human blood. Inflammation. 2017;40:1155–1165. doi: 10.1007/s10753-017-0559-8. PubMed DOI
Justino G.C., Rodrigues M., Florencio M.H., Mira L. Structure and antioxidant activity of brominated flavonols and flavanones. J. Mass Spectrom. 2009;44:1459–1468. doi: 10.1002/jms.1630. PubMed DOI
Ahmed-Belkacem A., Pozza A., Muñoz-Martínez F., Bates S.E., Castanys S., Gamarro F., Di Pietro A., Pérez-Victoria J.M. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res. 2005;65:4852–4860. doi: 10.1158/0008-5472.CAN-04-1817. PubMed DOI
Miller M.B., Bassler B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI
Girard L. Quorum sensing in Vibrio spp.: The complexity of multiple signalling molecules in marine and aquatic environments. Crit. Rev. Microbiol. 2019;45:451–471. doi: 10.1080/1040841X.2019.1624499. PubMed DOI
Paczkowski J.E., Mukherjee S., McCready A.R., Cong J.P., Aquino C.J., Kim H., Henke B.R., Smith C.D., Bassler B.L. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 2017;292:4064–4076. doi: 10.1074/jbc.M116.770552. PubMed DOI PMC
Manefield M., de Nys R., Naresh K., Roger R., Givskov M., Peter S., Kjelleberg S. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology. 1999;145:283–291. doi: 10.1099/13500872-145-2-283. PubMed DOI
Soukarieh F., Liu R., Romero M., Roberston S.N., Richardson W., Lucanto S., Oton E.V., Qudus N.R., Mashabi A., Grossman S., et al. Hit identification of new potent PqsR antagonists as inhibitors of quorum sensing in planktonic and biofilm grown Pseudomonas aeruginosa. Front. Chem. 2020;8:204. doi: 10.3389/fchem.2020.00204. PubMed DOI PMC
Lopes L.A.A., Dos Santos Rodrigues J.B., Magnani M., de Souza E.L., de Siqueira-Júnior J.P. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb. Pathog. 2017;107:193–197. doi: 10.1016/j.micpath.2017.03.033. PubMed DOI
Topal F., Nar M., Gocer H., Kalin P., Kocyigit U.M., Gülçin İ., Alwasel S.H. Antioxidant activity of taxifolin: An activity–structure relationship. J. Enzym. Inhib. Med. Chem. 2016;31:674–683. doi: 10.3109/14756366.2015.1057723. PubMed DOI
Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI
Viktorová J., Dobiasová S., Řehořová K., Biedermann D., Káňová K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC
Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P., et al. Chemoenzymatic preparation and biophysical properties of sulfated quercetin metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC
Dobiasová S., Řehořová K., Kučerová D., Biedermann D., Káňová K., Petrásková L., Koucká K., Václavíková R., Valentová K., Ruml T., et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants. 2020;9:455. doi: 10.3390/antiox9050455. PubMed DOI PMC
Waheed Janabi A.H., Kamboh A.A., Saeed M., Xiaoyu L., BiBi J., Majeed F., Naveed M., Mughal M.J., Korejo N.A., Kamboh R., et al. Flavonoid-rich foods (FRF): A promising nutraceutical approach. Iran J. Basic Med. Sci. 2020;23:140–153. PubMed PMC
Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Szemerédi N., Kincses A., Řehořová K., Hoang L., Salardón-Jiménez N., Sevilla-Hernández C., Viktorová J., Domínguez-Álvarez E., Spengler G. Ketone- and cyano-selenoesters to overcome efflux pump, quorum-sensing, and biofilm-mediated resistance. Antibiotics. 2020;9:896. doi: 10.3390/antibiotics9120896. PubMed DOI PMC
Hoang L., Beneš F., Fenclová M., Kronusová O., Švarcová V., Řehořová K., Baldassarre Švecová E., Vosátka M., Hajšlová J., Kaštánek P., et al. Phytochemical composition and in vitro biological activity of iris spp. (iridaceae): A new source of bioactive constituents for the inhibition of oral bacterial biofilms. Antibiotics. 2020;9:403. doi: 10.3390/antibiotics9070403. PubMed DOI PMC
Joyeux M., Mortier F., Fleurentin J. Screening of antiradical, antilipoperoxidant and hepatoprotective effects of nine plant extracts used in Caribbean folk medicine. Phytother. Res. 1995;9:228–230. doi: 10.1002/ptr.2650090316. DOI
Roubalová L., Purchartová K., Papoušková B., Vacek J., Křen V., Ulrichová J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI
Velioglu Y.S., Mazza G., Gao L., Oomah B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998;46:4113–4117. doi: 10.1021/jf9801973. DOI
Vavříková E., Vacek J., Valentová K., Marhol P., Ulrichová J., Kuzma M., Křen V. Chemo-enzymatic synthesis of silybin and 2,3-dehydrosilybin dimers. Molecules. 2014;19:4115–4134. doi: 10.3390/molecules19044115. PubMed DOI PMC
Tran V.N., Viktorová J., Augustýnková K., Jelenová N., Dobiasová S., Řehořová K., Fenclová M., Stránská-Zachariášová M., Vítek L., Hajšlová J., et al. In silico and in vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC