Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499444

Grantová podpora
21-00551S Czech Science Foundation
LTC20070 Ministry of Education Youth and Sports
COST Action CA17104 <STRATAGEM> European Cooperation in Science and Technology

A library of previously unknown halogenated derivatives of flavonolignans (silybins A and B, 2,3-dehydrosilybin, silychristin A, and 2,3-dehydrosilychristin A) was prepared. The effect of halogenation on the biological activity of flavonolignans was investigated. Halogenated derivatives had a significant effect on bacteria. All prepared derivatives inhibited the AI-2 type of bacterial communication (quorum sensing) at concentrations below 10 µM. All prepared compounds also inhibited the adhesion of bacteria (Staphyloccocus aureus and Pseudomonas aeruginosa) to the surface, preventing biofilm formation. These two effects indicate that the halogenated derivatives are promising antibacterial agents. Moreover, these derivatives acted synergistically with antibiotics and reduced the viability of antibiotic-resistant S. aureus. Some flavonolignans were able to reverse the resistant phenotype to a sensitive one, implying that they modulate antibiotic resistance.

Zobrazit více v PubMed

Li C., La M.P., Tang H., Pan W.H., Sun P., Krohn K., Yi Y.H., Li L., Zhang W. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg. Med. Chem. Lett. 2012;22:4368–4372. doi: 10.1016/j.bmcl.2012.05.001. PubMed DOI

Singh A.J., Dattelbaum J.D., Field J.J., Smart Z., Woolly E.F., Barber J.M., Heathcott R., Miller J.H., Northcote P.T. Structurally diverse hamigerans from the New Zealand marine sponge Hamigera tarangaensis: NMR-directed isolation, structure elucidation and antifungal activity. Org. Biomol. Chem. 2013;11:8041–8051. doi: 10.1039/c3ob41305e. PubMed DOI

Smitha D., Kumar M.M.K., Ramana H., Rao D.V. Rubrolide R: A new furanone metabolite from the ascidian Synoicum of the Indian Ocean. Nat. Prod. Res. 2014;28:12–17. doi: 10.1080/14786419.2013.827194. PubMed DOI

Parker W.B., Cheng Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther. 1990;48:381–395. doi: 10.1016/0163-7258(90)90056-8. PubMed DOI

Senderowicz A.M. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials. Investig. New Drugs. 1999;17:313–320. doi: 10.1023/A:1006353008903. PubMed DOI

Deep A., Marwaha R.K., Marwaha M.G., Jyoti, Nandal R., Sharma A.K. Flavopiridol as cyclin dependent kinase (CDK) inhibitor: A review. New J. Chem. 2018;42:18500–18507. doi: 10.1039/C8NJ04306J. DOI

Naderi G.A., Asgary S., Sarraf-Zadegan N., Shirvany H. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell Biochem. 2003;246:193–196. doi: 10.1023/A:1023483223842. PubMed DOI

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Křen V., Valentová K. Silybin and its congeners: From traditional medicine to molecular effects. Nat. Prod. Rep. 2022;39:1264–1281. doi: 10.1039/D2NP00013J. PubMed DOI

Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI

Valentová K., Biedermann D., Křen V. 2,3-Dehydroderivatives of silymarin flavonolignans: Prospective natural compounds for the prevention of chronic diseases. Proceedings. 2019;11:21. doi: 10.3390/proceedings2019011021. DOI

Holasová K., Křížkovská B., Hoang L., Dobiasová S., Lipov J., Macek T., Křen V., Valentová K., Ruml T., Viktorová J. Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomed. Pharmacother. 2022;149:112806. doi: 10.1016/j.biopha.2022.112806. PubMed DOI

Karimova E., Baltina L., Spirikhin L., Gabbasov T., Orshanskaya Y., Zarubaev V. Synthesis and antiviral activity of quercetin brominated derivatives. Nat. Prod. Commun. 2015;10:1565–1568. doi: 10.1177/1934578X1501000920. PubMed DOI

Pan G., Yang K., Ma Y., Zhao X., Lu K., Yu P. Synthesis of 6- or 8-bromo flavonoids by regioselective mono-bromination and deprotection protocol from flavonoid alkyl ethers. Bull. Korean Chem. Soc. 2015;36:1460–1466. doi: 10.1002/bkcs.10286. DOI

Kiehlmann E., Szczepina M.G. Epimerization, transacylation and bromination of dihydroquercetin acetates; synthesis of 8-bromodihydroquercetin. Cent. Eur. J. Chem. 2011;9:492–498. doi: 10.2478/s11532-011-0032-8. DOI

Hurtová M., Biedermann D., Kuzma M., Křen V. Mild and selective method of bromination of flavonoids. J. Nat. Prod. 2020;83:3324–3331. doi: 10.1021/acs.jnatprod.0c00655. PubMed DOI

Binsack R., Boersma B.J., Patel R.P., Kirk M., White C.R., Darley-Usmar V., Barnes S., Zhou F., Parks D.A. Enhanced antioxidant activity after chlorination of quercetin by hypochlorous acid. Alcohol. Clin. Exp. Res. 2001;25:434–443. doi: 10.1111/j.1530-0277.2001.tb02232.x. PubMed DOI

Freitas M., Ribeiro D., Tome S.M., Silva A.M., Fernandes E. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur. J. Med. Chem. 2014;86:153–164. doi: 10.1016/j.ejmech.2014.08.035. PubMed DOI

Lu K., Chu J., Wang H., Fu X., Quan D., Ding H., Yao Q., Yu P. Regioselective iodination of flavonoids by N-iodosuccinimide under neutral conditions. Tetrahedron Lett. 2013;54:6345–6348. doi: 10.1016/j.tetlet.2013.09.051. DOI

Pérez M., Ruiz D., Autino J., Sathicq A., Romanelli G. A very simple solvent-free method for the synthesis of 2-arylchromones using KHSO4 as a recyclable catalyst. Comptes Rendus Chim. 2016;19:551–555. doi: 10.1016/j.crci.2016.02.014. DOI

Zhang J.W., Yang W.W., Chen L.L., Chen P., Wang Y.B., Chen D.Y. An efficient tandem synthesis of chromones from o-bromoaryl ynones and benzaldehyde oxime. Org. Biomol. Chem. 2019;17:7461–7467. doi: 10.1039/C9OB01387C. PubMed DOI

Tao T., He C., Deng J., Huang Y., Su Q., Peng M., Yi M., Darko K.O., Zou H., Yang X. A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3′,4′-O-pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway. Oncotarget. 2017;8:71657–71671. doi: 10.18632/oncotarget.17799. PubMed DOI PMC

Proenca C., Ribeiro D., Soares T., Tome S.M., Silva A.M.S., Lima J., Fernandes E., Freitas M. Chlorinated flavonoids modulate the inflammatory process in human blood. Inflammation. 2017;40:1155–1165. doi: 10.1007/s10753-017-0559-8. PubMed DOI

Justino G.C., Rodrigues M., Florencio M.H., Mira L. Structure and antioxidant activity of brominated flavonols and flavanones. J. Mass Spectrom. 2009;44:1459–1468. doi: 10.1002/jms.1630. PubMed DOI

Ahmed-Belkacem A., Pozza A., Muñoz-Martínez F., Bates S.E., Castanys S., Gamarro F., Di Pietro A., Pérez-Victoria J.M. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res. 2005;65:4852–4860. doi: 10.1158/0008-5472.CAN-04-1817. PubMed DOI

Miller M.B., Bassler B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI

Girard L. Quorum sensing in Vibrio spp.: The complexity of multiple signalling molecules in marine and aquatic environments. Crit. Rev. Microbiol. 2019;45:451–471. doi: 10.1080/1040841X.2019.1624499. PubMed DOI

Paczkowski J.E., Mukherjee S., McCready A.R., Cong J.P., Aquino C.J., Kim H., Henke B.R., Smith C.D., Bassler B.L. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 2017;292:4064–4076. doi: 10.1074/jbc.M116.770552. PubMed DOI PMC

Manefield M., de Nys R., Naresh K., Roger R., Givskov M., Peter S., Kjelleberg S. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology. 1999;145:283–291. doi: 10.1099/13500872-145-2-283. PubMed DOI

Soukarieh F., Liu R., Romero M., Roberston S.N., Richardson W., Lucanto S., Oton E.V., Qudus N.R., Mashabi A., Grossman S., et al. Hit identification of new potent PqsR antagonists as inhibitors of quorum sensing in planktonic and biofilm grown Pseudomonas aeruginosa. Front. Chem. 2020;8:204. doi: 10.3389/fchem.2020.00204. PubMed DOI PMC

Lopes L.A.A., Dos Santos Rodrigues J.B., Magnani M., de Souza E.L., de Siqueira-Júnior J.P. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb. Pathog. 2017;107:193–197. doi: 10.1016/j.micpath.2017.03.033. PubMed DOI

Topal F., Nar M., Gocer H., Kalin P., Kocyigit U.M., Gülçin İ., Alwasel S.H. Antioxidant activity of taxifolin: An activity–structure relationship. J. Enzym. Inhib. Med. Chem. 2016;31:674–683. doi: 10.3109/14756366.2015.1057723. PubMed DOI

Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI

Viktorová J., Dobiasová S., Řehořová K., Biedermann D., Káňová K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P., et al. Chemoenzymatic preparation and biophysical properties of sulfated quercetin metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC

Dobiasová S., Řehořová K., Kučerová D., Biedermann D., Káňová K., Petrásková L., Koucká K., Václavíková R., Valentová K., Ruml T., et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants. 2020;9:455. doi: 10.3390/antiox9050455. PubMed DOI PMC

Waheed Janabi A.H., Kamboh A.A., Saeed M., Xiaoyu L., BiBi J., Majeed F., Naveed M., Mughal M.J., Korejo N.A., Kamboh R., et al. Flavonoid-rich foods (FRF): A promising nutraceutical approach. Iran J. Basic Med. Sci. 2020;23:140–153. PubMed PMC

Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Szemerédi N., Kincses A., Řehořová K., Hoang L., Salardón-Jiménez N., Sevilla-Hernández C., Viktorová J., Domínguez-Álvarez E., Spengler G. Ketone- and cyano-selenoesters to overcome efflux pump, quorum-sensing, and biofilm-mediated resistance. Antibiotics. 2020;9:896. doi: 10.3390/antibiotics9120896. PubMed DOI PMC

Hoang L., Beneš F., Fenclová M., Kronusová O., Švarcová V., Řehořová K., Baldassarre Švecová E., Vosátka M., Hajšlová J., Kaštánek P., et al. Phytochemical composition and in vitro biological activity of iris spp. (iridaceae): A new source of bioactive constituents for the inhibition of oral bacterial biofilms. Antibiotics. 2020;9:403. doi: 10.3390/antibiotics9070403. PubMed DOI PMC

Joyeux M., Mortier F., Fleurentin J. Screening of antiradical, antilipoperoxidant and hepatoprotective effects of nine plant extracts used in Caribbean folk medicine. Phytother. Res. 1995;9:228–230. doi: 10.1002/ptr.2650090316. DOI

Roubalová L., Purchartová K., Papoušková B., Vacek J., Křen V., Ulrichová J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI

Velioglu Y.S., Mazza G., Gao L., Oomah B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998;46:4113–4117. doi: 10.1021/jf9801973. DOI

Vavříková E., Vacek J., Valentová K., Marhol P., Ulrichová J., Kuzma M., Křen V. Chemo-enzymatic synthesis of silybin and 2,3-dehydrosilybin dimers. Molecules. 2014;19:4115–4134. doi: 10.3390/molecules19044115. PubMed DOI PMC

Tran V.N., Viktorová J., Augustýnková K., Jelenová N., Dobiasová S., Řehořová K., Fenclová M., Stránská-Zachariášová M., Vítek L., Hajšlová J., et al. In silico and in vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nitrogen-Containing Flavonoids-Preparation and Biological Activity

. 2024 Aug 13 ; 9 (32) : 34938-34950. [epub] 20240729

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...