In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
16-06008S
Grantová Agentura České Republiky - International
18-00150S
Grantová Agentura České Republiky - International
692195
Horizon 2020 - International
LTC19007
European Cooperation in Science and Technology - International
CZ.2.16/3.1.00/21537 and CZ.2.16/3.1.00/24503
Operational Programme Prague-Competitiveness - International
LO1601, MSMT-43760/2015
Czech National Program of Sustainability NPU I - International
AZV 16-27317A and RVO-VFN64165/2019
Ministerstvo Zdravotnictví Ceské Republiky - International
PubMed
32121188
PubMed Central
PMC7150870
DOI
10.3390/toxins12030148
PII: toxins12030148
Knihovny.cz E-zdroje
- Klíčová slova
- acute toxicity, cell protection, co-culture models, combined toxicity, genotoxicity, in silico prediction, silibinin,
- MeSH
- buněčné linie MeSH
- kokultivační techniky MeSH
- kometový test MeSH
- lékové interakce MeSH
- lidé MeSH
- mykotoxiny toxicita MeSH
- myši MeSH
- ochranné látky farmakologie MeSH
- ostropestřec mariánský chemie MeSH
- P-glykoprotein metabolismus MeSH
- počítačová simulace MeSH
- potravní doplňky MeSH
- silibinin farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mykotoxiny MeSH
- ochranné látky MeSH
- P-glykoprotein MeSH
- silibinin MeSH
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
1st Faculty of Medicine Charles University Katerinska 32 12108 Prague 2 Czech Republic
Faculty General Hospital U Nemocnice 2 12808 Praha 2 Czech Republic
Zobrazit více v PubMed
Fernández-Blanco C., Elmo L., Waldner T., Ruiz M.J. Cytotoxic Effects Induced by Patulin, Deoxynivalenol and Toxin T2 Individually and in Combination in Hepatic Cells (HepG2) Food Chem. Toxicol. 2018;120:12–23. doi: 10.1016/j.fct.2018.06.019. PubMed DOI
Stanciu O., Loghin F., Filip L., Cozma A., Miere D., Mañes J., Banc R. Occurence of Fusarium Mycotoxins in Wheat from Europe—A Review. Acta Univ. Cibiniensis Ser. E Food Technol. 2015;19:35–60. doi: 10.1515/aucft-2015-0005. DOI
Pestka J.J., Zhou H.R., Moon Y., Chung Y.J. Cellular and Molecular Mechanisms for Immune Modulation by Deoxynivalenol and Other Trichothecenes: Unraveling a Paradox. Toxicol. Lett. 2004;153:61–73. doi: 10.1016/j.toxlet.2004.04.023. PubMed DOI
Zhang J., Zhang H., Liu S., Wu W., Zhang H. Comparison of Anorectic Potencies of Type a Trichothecenes T-2 Toxin, HT-2 Toxin, Diacetoxyscirpenol, and Neosolaniol. Toxins. 2018;10:179. doi: 10.3390/toxins10050179. PubMed DOI PMC
Wang X., Wang Y., Qiu M., Sun L., Wang X., Li C., Xu D., Gooneratne R. Cytotoxicity of T-2 and Modified T-2 Toxins: Induction of JAK/STAT Pathway in RAW264.7 Cells by Hepatopancreas and Muscle Extracts of Shrimp Fed with T-2 Toxin. Toxicol. Res. 2017;6:144–151. doi: 10.1039/C6TX00392C. PubMed DOI PMC
Creppy E.E. Update of Survey, Regulation and Toxic Effects of Mycotoxins in Europe. Toxicol. Lett. 2002;127:19–28. doi: 10.1016/S0378-4274(01)00479-9. PubMed DOI
Fraeyman S., Croubels S., Devreese M., Antonissen G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins. 2017;9:228. doi: 10.3390/toxins9070228. PubMed DOI PMC
Luz C., Saladino F., Luciano F.B., Mañes J., Meca G. Occurrence, Toxicity, Bioaccessibility and Mitigation Strategies of Beauvericin, a Minor Fusarium Mycotoxin. Food Chem. Toxicol. 2017;107:430–439. doi: 10.1016/j.fct.2017.07.032. PubMed DOI
Rodríguez-Carrasco Y., Mañes J., Berrada H., Juan C. Development and Validation of a LC-ESI-MS/MS Method for the Determination of Alternaria Toxins Alternariol, Alternariol Methyl-Ether and Tentoxin in Tomato and Tomato-Based Products. Toxins. 2016;8:328. doi: 10.3390/toxins8110328. PubMed DOI PMC
Zambonin C.G., Monaci L., Aresta A. Solid-Phase Microextraction-High Performance Liquid Chromatography and Diode Array Detection for the Determination of Mycophenolic Acid in Cheese. Food Chem. 2002;78:249–254. doi: 10.1016/S0308-8146(02)00108-5. DOI
Fontaine K., Passeró E., Vallone L., Hymery N., Coton M., Jany J.L., Mounier J.Ô., Coton E. Occurrence of Roquefortine C, Mycophenolic Acid and Aflatoxin M1 Mycotoxins in Blue-Veined Cheeses. Food Control. 2015;47:634–640. doi: 10.1016/j.foodcont.2014.07.046. DOI
De Angelis E., Monaci L., Mackie A., Salt L., Visconti A. Reprint of “Bioaccessibility of T-2 and HT-2 Toxins in Mycotoxin Contaminated Bread Models Submitted to in Vitro Human Digestion”. Innov. Food Sci. Emerg. Technol. 2013;25:88–96. doi: 10.1016/j.ifset.2014.07.009. DOI
Weidner M., Hüwel S., Ebert F., Schwerdtle T., Galla H.J., Humpf H.U. Influence of T-2 and HT-2 Toxin on the Blood-Brain Barrier In Vitro: New Experimental Hints for Neurotoxic Effects. PLoS ONE. 2013;8:1–10. doi: 10.1371/journal.pone.0060484. PubMed DOI PMC
Ruiz M.J., Franzova P., Juan-García A., Font G. Toxicological Interactions between the Mycotoxins Beauvericin, Deoxynivalenol and T-2 Toxin in CHO-K1 Cells in Vitro. Toxicon. 2011;58:315–326. doi: 10.1016/j.toxicon.2011.07.015. PubMed DOI
Li Y., Wang Z., Beier R.C., Shen J., Smet D.D., De Saeger S., Zhang S. T-2 Toxin, a Trichothecene Mycotoxin: Review of Toxicity, Metabolism, and Analytical Methods. J. Agric. Food Chem. 2011;59:3441–3453. doi: 10.1021/jf200767q. PubMed DOI
Hassanane M., ESA A., S E.-F., MA A., A H. Mutagenicity of the Mycotoxin Diacetoxyscirpenol on Somatic and Germ Cells of Mice. Mycotoxin Res. 2000;16:54–64. doi: 10.1007/BF02946105. PubMed DOI
Qureshi M.A., Brundage M.A., Hamilton P.B. 4β, 15-Diacetoxyscirpenol Induces Cytotoxicity and Alterations in Phagocytic and Fc-Receptor Expression Functions in Chicken Macrophages In Vitro. Immunopharmacol. Immunotoxicol. 1998;20:541–553. doi: 10.3109/08923979809031515. PubMed DOI
Zhou H., George S., Hay C., Lee J., Qian H., Sun X. Individual and Combined Effects of Aflatoxin B1, Deoxynivalenol and Zearalenone on HepG2 and RAW 264.7 Cell Lines. Food Chem. Toxicol. 2017;103:18–27. doi: 10.1016/j.fct.2017.02.017. PubMed DOI
Fernández-Blanco C., Font G., Ruiz M.J. Interaction Effects of Enniatin B, Deoxinivalenol and Alternariol in Caco-2 Cells. Toxicol. Lett. 2016;241:38–48. doi: 10.1016/j.toxlet.2015.11.005. PubMed DOI
Wang H.W., Wang J.Q., Zheng B.Q., Li S.L., Zhang Y.D., Li F.D., Zheng N. Cytotoxicity Induced by Ochratoxin A, Zearalenone, and α-Zearalenol: Effects of Individual and Combined Treatment. Food Chem. Toxicol. 2014;71:217–224. doi: 10.1016/j.fct.2014.05.032. PubMed DOI
Bouaziz C., Sharaf el dein O., El Golli E., Abid-Essefi S., Brenner C., Lemaire C., Bacha H. Different Apoptotic Pathways Induced by Zearalenone, T-2 Toxin and Ochratoxin A in Human Hepatoma Cells. Toxicology. 2008;254:19–28. doi: 10.1016/j.tox.2008.08.020. PubMed DOI
Kouadio J.H., Mobio T.A., Baudrimont I., Moukha S., Dano S.D., Creppy E.E. Comparative Study of Cytotoxicity and Oxidative Stress Induced by Deoxynivalenol, Zearalenone or Fumonisin B1 in Human Intestinal Cell Line Caco-2. Toxicology. 2005;213:56–65. doi: 10.1016/j.tox.2005.05.010. PubMed DOI
Ruiz M.J., Macáková P., Juan-García A., Font G. Cytotoxic Effects of Mycotoxin Combinations in Mammalian Kidney Cells. Food Chem. Toxicol. 2011;49:2718–2724. doi: 10.1016/j.fct.2011.07.021. PubMed DOI
Ferrer E., Juan-García A., Font G., Ruiz M.J. Reactive Oxygen Species Induced by Beauvericin, Patulin and Zearalenone in CHO-K1 Cells. Toxicol. Vitr. 2009;23:1504–1509. doi: 10.1016/j.tiv.2009.07.009. PubMed DOI
Prosperini A., Berrada H., Ruiz M.J., Caloni F., Coccini T., Spicer L.J., Perego M.C., Lafranconi A. A Review of the Mycotoxin Enniatin B. Front. Public Health. 2017;5:304. doi: 10.3389/fpubh.2017.00304. PubMed DOI PMC
Fernández-Blanco C., Juan-García A., Juan C., Font G., Ruiz M.J. Alternariol Induce Toxicity via Cell Death and Mitochondrial Damage on Caco-2 Cells. Food Chem. Toxicol. 2016;88:32–39. doi: 10.1016/j.fct.2015.11.022. PubMed DOI
Frizzell C., Ndossi D., Kalayou S., Eriksen G.S., Verhaegen S., Sørlie M., Elliott C.T., Ropstad E., Connolly L. An in Vitro Investigation of Endocrine Disrupting Effects of the Mycotoxin Alternariol. Toxicol. Appl. Pharmacol. 2013;271:64–71. doi: 10.1016/j.taap.2013.05.002. PubMed DOI
Pfeiffer E., Schmit C., Burkhardt B., Altemöller M., Podlech J., Metzler M. Glucuronidation of the Mycotoxins Alternariol and Alternariol-9-Methyl Ether in Vitro: Chemical Structures of Glucuronides and Activities of Human UDP-Glucuronosyltransferase Isoforms. Mycotoxin Res. 2009;25:3–10. doi: 10.1007/s12550-008-0001-z. PubMed DOI
Gomis J.-M., Haraux F., Santolini J., André F., Sigalat C., Minoletti C. An Insight into the Mechanism of Inhibition and Reactivation of the F 1 -ATPases by Tentoxin. Biochemistry. 2002;41:6008–6018. doi: 10.1021/bi015938z. PubMed DOI
Wu T.Y., Fridley B.L., Jenkins G.D., Batzler A., Wang L., Weinshilboum R.M. Mycophenolic Acid Response Biomarkers: A Cell Line Model System-Based Genome-Wide Screen. Int. Immunopharmacol. 2011;11:1057–1064. doi: 10.1016/j.intimp.2011.02.027. PubMed DOI PMC
Huang Y., Liu Z., Huang H., Liu H., Li L. Effects of Mycophenolic Acid on Endothelial Cells. Int. Immunopharmacol. 2005;5:1029–1039. doi: 10.1016/j.intimp.2005.01.015. PubMed DOI
Fung F., Clark R.F. Health Effects of Mycotoxins: A Toxicological Overview. J. Toxicol. Clin. Toxicol. 2004;42:217–234. doi: 10.1081/CLT-120030947. PubMed DOI
Zhou H., George S., Li C., Gurusamy S., Sun X., Gong Z., Qian H. Combined Toxicity of Prevalent Mycotoxins Studied in Fish Cell Line and Zebrafish Larvae Revealed That Type of Interactions Is Dose-Dependent. Aquat. Toxicol. 2017;193:60–71. doi: 10.1016/j.aquatox.2017.09.030. PubMed DOI
Speijers G.J.A., Speijers M.H.M. Combined Toxic Effects of Mycotoxins. Toxicol. Lett. 2004;153:91–98. doi: 10.1016/j.toxlet.2004.04.046. PubMed DOI
Castell-Auví A., Motilva M.J., Macià A., Torrell H., Bladé C., Pinent M., Arola L., Ardévol A. Organotypic Co-Culture System to Study Plant Extract Bioactivity on Hepatocytes. Food Chem. 2010;122:775–781. doi: 10.1016/j.foodchem.2010.03.052. DOI
Surai P. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC
He Q., Kim J., Sharma R.P. Silymarin Protects against Liver Damage in BALB/c Mice Exposed to Fumonisin B1despite Increasing Accumulation of Free Sphingoid Bases. Toxicol. Sci. 2004;80:335–342. doi: 10.1093/toxsci/kfh148. PubMed DOI
Naseer O., Khan J.A., Khan M.S., Omer M.O., Chishti G.A., Sohail M.L., Saleem M.U. Comparative Efficacy of Silymarin and Choline Chloride (Liver Tonics) in Preventing the Effects of Aflatoxin B1in Bovine Calves. Pol. J. Vet. Sci. 2016;19:545–551. doi: 10.1515/pjvs-2016-0068. PubMed DOI
Sozmen M., Devrim A.K., Tunca R., Bayezit M., Dag S., Essiz D. Protective Effects of Silymarin on Fumonisin B1-Induced Hepatotoxicity in Mice. J. Vet. Sci. 2014;15:51–60. doi: 10.4142/jvs.2014.15.1.51. PubMed DOI PMC
Al-Anati L., Essid E., Reinehr R., Petzinger E. Silibinin Protects OTA-Mediated TNF-α Release from Perfused Rat Livers and Isolated Rat Kupffer Cells. Mol. Nutr. Food Res. 2009;53:460–466. doi: 10.1002/mnfr.200800110. PubMed DOI
Essid E., Dernawi Y., Petzinger E. Apoptosis Induction by OTA and TNF-?? In Cultured Primary Rat Hepatocytes and Prevention by Silibinin. Toxins. 2012;4:1139–1156. doi: 10.3390/toxins4111139. PubMed DOI PMC
Essid E., Petzinger E. Silibinin Pretreatment Protects against Ochratoxin A-Mediated Apoptosis in Primary Rat Hepatocytes. Mycotoxin Res. 2011;27:167–176. doi: 10.1007/s12550-011-0092-9. PubMed DOI
Duca R., Mabondzo A., Bravin F., Delaforge M. In Vitro Co-Culture Models to Evaluate Acute Cytotoxicity of Individual and Combined Mycotoxin Exposures on Caco-2, THP-1 and HepaRG Human Cell Lines. Chem. Biol. Interact. 2018;281:51–59. doi: 10.1016/j.cbi.2017.12.004. PubMed DOI
González-Arias C.A., Marín S., Rojas-García A.E., Sanchis V., Ramos A.J. UPLC-MS/MS Analysis of Ochratoxin A Metabolites Produced by Caco-2 and HepG2 Cells in a Co-Culture System. Food Chem. Toxicol. 2017;109:333–340. doi: 10.1016/j.fct.2017.09.011. PubMed DOI
González-Arias C.A., Crespo-Sempere A., Marín S., Sanchis V., Ramos A.J. Modulation of the Xenobiotic Transformation System and Inflammatory Response by Ochratoxin A Exposure Using a Co-Culture System of Caco-2 and HepG2 Cells. Food Chem. Toxicol. 2015;86:245–252. doi: 10.1016/j.fct.2015.10.007. PubMed DOI
Fenclova M., Novakova A., Viktorova J., Jonatova P., Dzuman Z., Ruml T., Kren V., Hajslova J., Vitek L., Stranska-Zachariasova M. Poor Chemical and Microbiological Quality of the Commercial Milk Thistle-Based Dietary Supplements May Account for Their Reported Unsatisfactory and Non-Reproducible Clinical Outcomes. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-47250-0. PubMed DOI PMC
Veprikova Z., Zachariasova M., Dzuman Z., Zachariasova A., Fenclova M., Slavikova P., Vaclavikova M., Mastovska K., Hengst D., Hajslova J. Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Risk for Consumers. J. Agric. Food Chem. 2015;63:6633–6643. doi: 10.1021/acs.jafc.5b02105. PubMed DOI
EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of Alternaria Toxins in Feed and Food. EFSA J. 2011;9:2407. doi: 10.2903/j.efsa.2011.2407. DOI
EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of T-2 and HT-2 Toxin in Food and Feed. EFSA J. 2011;9:2481. doi: 10.2903/j.efsa.2011.2481. DOI
EFSA Panel on Contaminants in the Food Chain Scientific Opinion on the Risks for Public Health Related to the Presence of Zearalenone in Food. EFSA J. 2011;9:2197. doi: 10.2903/j.efsa.2011.2197. DOI
EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on the Risks to Human and Animal Health Related to the Presence of Beauvericin and Enniatins in Food and Feed. EFSA J. 2014;12:3802. doi: 10.2903/j.efsa.2014.3802. DOI
Knutsen H.K., Alexander J., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Grasl-Kraupp B., Hogstrand C., et al. Risks to Human and Animal Health Related to the Presence of Deoxynivalenol and Its Acetylated and Modified Forms in Food and Feed. EFSA J. 2017;15 doi: 10.2903/j.efsa.2017.4718. PubMed DOI PMC
Knutsen H.K., Alexander J., Barregård L., Bignami M., Brüschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Grasl-Kraupp B., Hogstrand C., et al. Risk to Human and Animal Health Related to the Presence of 4,15-Diacetoxyscirpenol in Food and Feed. EFSA J. 2018;16 doi: 10.2903/j.efsa.2018.5367. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2012;64:4–17. doi: 10.1016/j.addr.2012.09.019. PubMed DOI
Fernández-Blanco C., Font G., Ruiz M.J. Role of Quercetin on Caco-2 Cells against Cytotoxic Effects of Alternariol and Alternariol Monomethyl Ether. Food Chem. Toxicol. 2016;89:60–66. doi: 10.1016/j.fct.2016.01.011. PubMed DOI
Nielsen T.S., Sørensen I.F., Sørensen J.L., Søndergaard T.E., Purup S. Cytotoxic and Apoptotic Effect of Mycotoxins in Human Small Intestinal Cells. J. Anim. Sci. 2016;94 doi: 10.2527/jas.2015-9739. DOI
Tatay E., Meca G., Font G., Ruiz M.J. Interactive Effects of Zearalenone and Its Metabolites on Cytotoxicity and Metabolization in Ovarian CHO-K1 Cells. Toxicol. In Vitro. 2014;28:95–103. doi: 10.1016/j.tiv.2013.06.025. PubMed DOI
Prosperini A., Font G., Ruiz M.J. Interaction Effects of Fusarium Enniatins (A, A1, B and B1) Combinations on in Vitro Cytotoxicity of Caco-2 Cells. Toxicol. Vitr. 2014;28:88–94. doi: 10.1016/j.tiv.2013.06.021. PubMed DOI
Behm C., Fllmann W., Degen G.H. Cytotoxic Potency of Mycotoxins in Cultures of V79 Lung Fibroblast Cells. J. Toxicol. Environ. Health Part Curr. Issues. 2012;75:1226–1231. doi: 10.1080/15287394.2012.709170. PubMed DOI
Lautraite S., Rio B., Guinard J., Parent-Massin D. In Vitro Effects of Diacetoxyscirpenol (DAS) on Human and Rat Granulo-Monocytic Progenitors. Mycopathologia. 1997;140:59–64. doi: 10.1023/A:1006833606209. PubMed DOI
Jha S.N., Jaiswal P., Grewal M.K., Gupta M., Bhardwaj R. Detection of Adulterants and Contaminants in Liquid Foods—A Review. Crit. Rev. Food Sci. Nutr. 2016;56:1662–1684. doi: 10.1080/10408398.2013.798257. PubMed DOI
Rychlik M. Mycotoxins Except Fusarium Toxins in Foods. Elsevier Ltd.; Cambridge, UK: 2017. DOI
Sobrova P., Adam V., Vasatkova A., Beklova M., Zeman L., Kizek R. Deoxynivalenol and Its Toxicity. Interdiscip. Toxicol. 2010;3:94–99. doi: 10.2478/v10102-010-0019-x. PubMed DOI PMC
Tsuda S., Kosaka Y., Murakami M., Matsuo H., Matsusaka N., Taniguchi K., Sasaki Y.F. Detection of Nivalenol Genotoxicity in Cultured Cells and Multiple Mouse Organs by the Alkaline Single-Cell Gel Electrophoresis Assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1998;415:191–200. doi: 10.1016/S1383-5718(98)00068-0. PubMed DOI
Fehr M., Pahlke G., Fritz J., Christensen M.O., Boege F., Altemöller M., Podlech J., Marko D. Alternariol Acts as a Topoisomerase Poison, Preferentially Affecting the IIα Isoform. Mol. Nutr. Food Res. 2009;53:441–451. doi: 10.1002/mnfr.200700379. PubMed DOI
Tiessen C., Fehr M., Schwarz C., Baechler S., Domnanich K., Böttler U., Pahlke G., Marko D. Modulation of the Cellular Redox Status by the Alternaria Toxins Alternariol and Alternariol Monomethyl Ether. Toxicol. Lett. 2013;216:23–30. doi: 10.1016/j.toxlet.2012.11.005. PubMed DOI
Bony S., Carcelen M., Olivier L., Devaux A. Genotoxicity Assessment of Deoxynivalenol in the Caco-2 Cell Line Model Using the Comet Assay. Toxicol. Lett. 2006;166:67–76. doi: 10.1016/j.toxlet.2006.04.010. PubMed DOI
Takakura N., Nesslany F., Fessard V., Le Hegarat L. Absence of in Vitro Genotoxicity Potential of the Mycotoxin Deoxynivalenol in Bacteria and in Human TK6 and HepaRG Cell Lines. Food Chem. Toxicol. 2014;66:113–121. doi: 10.1016/j.fct.2014.01.029. PubMed DOI
Ma S., Zhao Y., Sun J., Mu P., Deng Y. MiR449a/SIRT1/PGC-1α Is Necessary for Mitochondrial Biogenesis Induced by T-2 Toxin. Front. Pharmacol. 2018;8:954. doi: 10.3389/fphar.2017.00954. PubMed DOI PMC
Klarić M.Š., Daraboš D., Rozgaj R., Kašuba V., Pepeljnjak S. Beauvericin and Ochratoxin A Genotoxicity Evaluated Using the Alkaline Comet Assay: Single and Combined Genotoxic Action. Arch. Toxicol. 2010;84:641–650. doi: 10.1007/s00204-010-0535-7. PubMed DOI
Prosperini A., Juan-García A., Font G., Ruiz M.J. Beauvericin-Induced Cytotoxicity via ROS Production and Mitochondrial Damage in Caco-2 Cells. Toxicol. Lett. 2013;222:204–211. doi: 10.1016/j.toxlet.2013.07.005. PubMed DOI
Dornetshuber R., Heffeter P., Lemmens-Gruber R., Elbling L., Marko D., Micksche M., Berger W. Oxidative Stress and DNA Interactions Are Not Involved in Enniatin- and Beauvericin-Mediated Apoptosis Induction. Mol. Nutr. Food Res. 2009;53:1112–1122. doi: 10.1002/mnfr.200800571. PubMed DOI
Mallebrera B., Juan-Garcia A., Font G., Ruiz M.J. Mechanisms of Beauvericin Toxicity and Antioxidant Cellular Defense. Toxicol. Lett. 2016;246:28–34. doi: 10.1016/j.toxlet.2016.01.013. PubMed DOI
Prosperini A., Juan-García A., Font G., Ruiz M.J. Reactive Oxygen Species Involvement in Apoptosis and Mitochondrial Damage in Caco-2 Cells Induced by Enniatins A, A1, B and B1. Toxicol. Lett. 2013;222:36–44. doi: 10.1016/j.toxlet.2013.07.009. PubMed DOI
Kang C., Lee H., Yoo Y.S., Hah D.Y., Kim C.H., Kim E., Kim J.S. Evaluation of Oxidative DNA Damage Using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay, and the Protective Effects of N-Acetylcysteine Amide on Zearalenone-Induced Cytotoxicity in Chang Liver Cells. Toxicol. Res. 2013;29:43–52. doi: 10.5487/TR.2013.29.1.043. PubMed DOI PMC
Tatay E., Font G., Ruiz M.J. Cytotoxic Effects of Zearalenone and Its Metabolites and Antioxidant Cell Defense in CHO-K1 Cells. Food Chem. Toxicol. 2016;96:43–49. doi: 10.1016/j.fct.2016.07.027. PubMed DOI
Gao F., Jiang L.P., Chen M., Geng C.Y., Yang G., Ji F., Zhong L.F., Liu X.F. Genotoxic Effects Induced by Zearalenone in a Human Embryonic Kidney Cell Line. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2013;755:6–10. doi: 10.1016/j.mrgentox.2013.04.009. PubMed DOI
Tiessen C., Gehrke H., Kropat C., Schwarz C., Bächler S., Fehr M., Pahlke G., Marko D. Role of Topoisomerase Inhibition and DNA Repair Mechanisms in the Genotoxicity of Alternariol and Altertoxin-II. World Mycotoxin J. 2013;6:233–244. doi: 10.3920/WMJ2013.1592. DOI
Viktorová J., Dobiasová S., Řehořová K., Biedermann D., Káňová K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC
Fromm M.F. Importance of P-Glycoprotein at Blood-Tissue Barriers. Trends Pharmacol. Sci. 2004;25:423–429. doi: 10.1016/j.tips.2004.06.002. PubMed DOI
Meyer M.R., Wagmann L., Schneider-Daum N., Loretz B., De Souza Carvalho C., Lehr C.M., Maurer H.H. P-Glycoprotein Interactions of Novel Psychoactive Substances—Stimulation of ATP Consumption and Transport across Caco-2 Monolayers. Biochem. Pharmacol. 2015;94:220–226. doi: 10.1016/j.bcp.2015.01.008. PubMed DOI
Li X., Mu P., Wen J., Deng Y. Carrier-Mediated and Energy-Dependent Uptake and Efflux of Deoxynivalenol in Mammalian Cells. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-06199-8. PubMed DOI PMC
Videmann B., Tep J., Cavret S., Lecoeur S. Epithelial Transport of Deoxynivalenol: Involvement of Human P-Glycoprotein (ABCB1) and Multidrug Resistance-Associated Protein 2 (ABCC2) Food Chem. Toxicol. 2007;45:1938–1947. doi: 10.1016/j.fct.2007.04.011. PubMed DOI
Prouillac C., Videmann B., Mazallon M., Lecoeur S. Induction of Cells Differentiation and ABC Transporters Expression by a Myco-Estrogen, Zearalenone, in Human Choriocarcinoma Cell Line (BeWo) Toxicology. 2009;263:100–107. doi: 10.1016/j.tox.2009.06.023. PubMed DOI
Duca R.-C., Mabondzo A., Bravin F., Delaforge M. In Vivo Effects of Zearalenone on the Expression of Proteins Involved in the Detoxification of Rat Xenobiotics. Environ. Toxicol. 2012;27:98–108. doi: 10.1002/tox.20617. PubMed DOI
Koraichi F., Videmann B., Mazallon M., Benahmed M., Prouillac C., Lecoeur S. Zearalenone Exposure Modulates the Expression of ABC Transporters and Nuclear Receptors in Pregnant Rats and Fetal Liver. Toxicol. Lett. 2012;211:246–256. doi: 10.1016/j.toxlet.2012.04.001. PubMed DOI
Wang X., Wang W., Cheng G., Huang L., Chen D., Tao Y., Pan Y., Hao H., Wu Q., Wan D., et al. High Risk of Embryo-Fetal Toxicity: Placental Transfer of T-2 Toxin and Its Major Metabolite HT-2 Toxin in BeWo Cells. Toxicol. Sci. 2014;137:168–178. doi: 10.1093/toxsci/kft233. PubMed DOI
Smith M.C., Madec S., Coton E., Hymery N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in Vitro Combined Toxicological Effects. Toxins. 2016;8:94. doi: 10.3390/toxins8040094. PubMed DOI PMC
Entezari M., Mokhtari M.J., Hashemi M. Evaluation of Silibinin on the Viability of MCF-7 Human Breast Adenocarcinoma and HUVEC ( Human Umbilical Vein Endothelial ) Cell Lines. Breast. 2011;3:283–288.
Wan L.Y.M., Turner P.C., El-Nezami H. Individual and Combined Cytotoxic Effects of Fusarium Toxins (Deoxynivalenol, Nivalenol, Zearalenone and Fumonisins B1) on Swine Jejunal Epithelial Cells. Food Chem. Toxicol. 2013;57:276–283. doi: 10.1016/j.fct.2013.03.034. PubMed DOI
Thuvander A., Wikman C., Gadhasson I. In Vitro Exposure of Human Lymphocytes to Trichothecenes: Individual Variation in Sensitivity and Effects of Combined Exposure on Lymphocyte Function. Food Chem. Toxicol. 1999;37:639–648. doi: 10.1016/S0278-6915(99)00038-1. PubMed DOI
Lin X., Shao W., Yu F., Xing K., Liu H., Zhang F., Goldring M.B., Lammi M.J., Guo X. Individual and Combined Toxicity of T-2 Toxin and Deoxynivalenol on Human C-28/I2 and Rat Primary Chondrocytes. J. Appl. Toxicol. 2019;39:343–353. doi: 10.1002/jat.3725. PubMed DOI
Klarić M.Š., Rumora L., Ljubanović D., Pepeljnjak S. Cytotoxicity and Apoptosis Induced by Fumonisin B1, Beauvericin and Ochratoxin a in Porcine Kidney PK15 Cells: Effects of Individual and Combined Treatment. Arch. Toxicol. 2008;82:247–255. doi: 10.1007/s00204-007-0245-y. PubMed DOI
Juranova J., Aury-Landas J., Boumediene K., Bauge C., Biedermann D., Ulrichova J., Frankova J. Modulation of Skin Inflammatory Response by Active Components of Silymarin. Mol. Basel Switz. 2018;24:123. doi: 10.3390/molecules24010123. PubMed DOI PMC
Fan S., Li L., Chen S., Yu Y., Qi M., Tashiro S.I., Onodera S., Ikejima T. Silibinin Induced-Autophagic and Apoptotic Death Is Associated with an Increase in Reactive Oxygen and Nitrogen Species in HeLa Cells. Free Radic. Res. 2011;45:1307–1324. doi: 10.3109/10715762.2011.618186. PubMed DOI
Kim T.H., Woo J.S., Kim Y.K., Kim K.H. Silibinin Induces Cell Death through Reactive Oxygen Species-Dependent Downregulation of Notch-1/ERK/Akt Signaling in Human Breast Cancer Cells. J. Pharmacol. Exp. Ther. 2014;349:268–278. doi: 10.1124/jpet.113.207563. PubMed DOI
Wu Q.H., Wang X., Yang W., Nüssler A.K., Xiong L.Y., Kuča K., Dohnal V., Zhang X.J., Yuan Z.H. Oxidative Stress-Mediated Cytotoxicity and Metabolism of T-2 Toxin and Deoxynivalenol in Animals and Humans: An Update. Arch. Toxicol. 2014;88:1309–1326. doi: 10.1007/s00204-014-1280-0. PubMed DOI
Duan W., Jin X., Li Q., Tashiro S., Onodera S., Ikejima T. Silibinin Induced Autophagic and Apoptotic Cell Death in HT1080 Cells Through a Reactive Oxygen Species Pathway. J. Pharmacol. Sci. 2010;113:48–56. doi: 10.1254/jphs.09315FP. PubMed DOI
Abdel-Wahhab M.A., El-Nekeety A.A., Salman A.S., Abdel-Aziem S.H., Mehaya F.M., Hassan N.S. Protective Capabilities of Silymarin and Inulin Nanoparticles against Hepatic Oxidative Stress, Genotoxicity and Cytotoxicity of Deoxynivalenol in Rats. Toxicon. 2018;142:1–13. doi: 10.1016/j.toxicon.2017.12.045. PubMed DOI
Toğay V.A., Sevimli T.S., Sevimli M., Çelik D.A., Özçelik N. DNA Damage in Rats with Streptozotocin-Induced Diabetes; Protective Effect of Silibinin. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018;825:15–18. doi: 10.1016/j.mrgentox.2017.11.002. PubMed DOI
Fernandes Veloso Borges F., Ribeiro E Silva C., Moreira Goes W., Ribeiro Godoy F., Craveiro Franco F., Hollanda Véras J., Luiz Cardoso Bailão E.F., De Melo E Silva D., Gomes Cardoso C., Divino Da Cruz A., et al. Protective Effects of Silymarin and Silibinin against DNA Damage in Human Blood Cells. BioMed Res. Int. 2018;2018 doi: 10.1155/2018/6056948. PubMed DOI PMC
Tiwari P., Kumar A., Ali M., Mishra K.P. Radioprotection of Plasmid and Cellular DNA and Swiss Mice by Silibinin. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010;695:55–60. doi: 10.1016/j.mrgentox.2009.11.007. PubMed DOI
Alcaraz-Contreras Y., Mendoza-Lozano R.P., Martínez-Alcaraz E.R., Martínez-Alfaro M., Gallegos-Corona M.A., Ramírez-Morales M.A., Vázquez-Guevara M.A. Silymarin and Dimercaptosuccinic Acid Ameliorate Lead-Induced Nephrotoxicity and Genotoxicity in Rats. Hum. Exp. Toxicol. 2016;35:398–403. doi: 10.1177/0960327115591373. PubMed DOI
Bordin K., Saladino F., Fernández-Blanco C., Ruiz M.J., Mañes J., Fernández-Franzón M., Meca G., Luciano F.B. Reaction of Zearalenone and α-Zearalenol with Allyl Isothiocyanate, Characterization of Reaction Products, Their Bioaccessibility and Bioavailability in Vitro. Food Chem. 2017;217:648–654. doi: 10.1016/j.foodchem.2016.09.044. PubMed DOI
Gajęcka M., Jakimiuk E., Zielonka Ł., Obremski K., Gajęcki M. The Biotransformation of Chosen Mycotoxins. Pol Viet Sci. 2009;12:293–303. PubMed
Kabak B., Ozbey F. Assessment of the Bioaccessibility of Aflatoxins from Various Food Matrices Using an in Vitro Digestion Model, and the Efficacy of Probiotic Bacteria in Reducing Bioaccessibility. J. Food Compos. Anal. 2012;27:21–31. doi: 10.1016/j.jfca.2012.04.006. DOI
Gratz S.W., Dinesh R., Yoshinari T., Holtrop G., Richardson A.J., Duncan G., MacDonald S., Lloyd A., Tarbin J. Masked Trichothecene and Zearalenone Mycotoxins Withstand Digestion and Absorption in the Upper GI Tract but Are Efficiently Hydrolyzed by Human Gut Microbiota in Vitro. Mol. Nutr. Food Res. 2017;61:1600680. doi: 10.1002/mnfr.201600680. PubMed DOI
Videmann B., Mazallon M., Tep J., Lecoeur S. Metabolism and Transfer of the Mycotoxin Zearalenone in Human Intestinal Caco-2 Cells. Food Chem. Toxicol. 2008;46:3279–3286. doi: 10.1016/j.fct.2008.07.011. PubMed DOI
Meca G., Mañes J., Font G., Ruiz M.J. Study of the potential toxicity of enniatins A, A 1, B, B 1 by evaluation of duodenal and colonic bioavailability applying an invitro method by Caco-2 cells. Toxicon. 2012;59:1–11. doi: 10.1016/j.toxicon.2011.10.004. PubMed DOI
Burkhardt B., Pfeiffer E., Metzler M. Absorption and Metabolism of the Mycotoxins Alternariol and Alternariol-9-Methyl Ether in Caco-2 Cells in Vitro. Mycotoxin Res. 2009;25:149–157. doi: 10.1007/s12550-009-0022-2. PubMed DOI
Vidal A., Mengelers M., Yang S., De Saeger S., De Boevre M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018;17:1127–1155. doi: 10.1111/1541-4337.12367. PubMed DOI
Fæste C.K., Ivanova L., Uhlig S. In vitro metabolism of the mycotoxin enniatin B in different species and cytochrome P450 enzyme phenotyping by chemical inhibitors. Drug Metab. Dispos. 2011;39:1768–1776. doi: 10.1124/dmd.111.039529. PubMed DOI
Delaforge M., Andre F., Jaouen M., Dolgos H., Benech H., Gomis J.M., Noel J.P., Cavelier F., Verducci J., Aubagnac J.L., et al. Metabolism of tentoxin by hepatic cytochrome P-450 3A isozymes. Eur. J. Biochem. 1997;250:150–157. doi: 10.1111/j.1432-1033.1997.00150.x. PubMed DOI
Riss T.L., Moravec R.A., Niles A.L., Duellman S., Benink H.A., Worzella T.J., Minor L. Cell Viability Assays. Assay Guid. Man. Internet. 2013;114:785–796. doi: 10.1016/j.acthis.2012.01.006. DOI
Ferruzza S., Scarino M.L., Gambling L., Natella F., Sambuy Y. Biphasic Effect of Iron on Human Intestinal Caco-2 Cells: Early Effect on Tight Junction Permeability with Delayed Onset of Oxidative Cytotoxic Damage. Cell. Mol. Biol. 2003;49:89–99. PubMed
Stukonis V., Armonienė R., Lemežienė N., Kemešytė V., Statkevičiūtė G. Identification of Fine-Leaved Species of Genus Festuca by Molecular Methods. Pak. J. Bot. 2015;47:1137–1142. doi: 10.1016/j.bbrc.2008.07.063. DOI
Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 1988;175:184–191. doi: 10.1016/0014-4827(88)90265-0. PubMed DOI
McKelvey-Martin V.J., Green M.H.L., Schmezer P., Pool-Zobel B.L., De Meo M.P., Collins A. The Single Cell Gelelectrophores is Assay (comet Assay): A European Review. Mutat. Res. 1993;288:47–63. doi: 10.1016/0027-5107(93)90207-V. PubMed DOI
Nitrogen-Containing Flavonoids-Preparation and Biological Activity
Toxicological investigation of lilial
Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity
Feedborne Mycotoxins Beauvericin and Enniatins and Livestock Animals
Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species
Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer
In Vitro Comparison of the Bioactivities of Japanese and Bohemian Knotweed Ethanol Extracts