Evaluation of the Antimicrobial Efficacy of N-Acetyl-l-Cysteine, Rhamnolipids, and Usnic Acid-Novel Approaches to Fight Food-Borne Pathogens
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 17-15936S
Grantová Agentura České Republiky
DMR-1455247
The National Science Foundation
MSMT No 21-SVV/2020
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34768739
PubMed Central
PMC8583417
DOI
10.3390/ijms222111307
PII: ijms222111307
Knihovny.cz E-zdroje
- Klíčová slova
- N-Acetyl-l-cysteine, acute cytotoxicity, antimicrobial efficacy, bacterial growth, biofilm, food-borne pathogens, minimum inhibitory concentrations, rhamnolipids, usnic acid,
- MeSH
- acetylcystein farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky farmakologie MeSH
- benzofurany farmakologie MeSH
- biofilmy účinky léků MeSH
- buněčné linie MeSH
- Escherichia coli účinky léků MeSH
- glykolipidy farmakologie MeSH
- kontaminace potravin prevence a kontrola MeSH
- lidé MeSH
- Listeria monocytogenes účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- nemoci přenášené potravou farmakoterapie mikrobiologie MeSH
- potravinářská mikrobiologie metody MeSH
- Salmonella enterica účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcystein MeSH
- antibakteriální látky MeSH
- antiinfekční látky MeSH
- benzofurany MeSH
- glykolipidy MeSH
- rhamnolipid MeSH Prohlížeč
- usnic acid MeSH Prohlížeč
In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-l-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.
Center for Biofilm Engineering Montana State University Bozeman MT 59717 USA
Chemical and Biological Engineering Department Montana State University Bozeman MT 59717 USA
Department of Mathematical Sciences Montana State University Bozeman MT 59717 USA
Department of Microbiology and Cell Biology Montana State University Bozeman MT 59717 USA
Zobrazit více v PubMed
AL-Mamun M., Chowdhury T., Biswas B., Absar N. Food poisoning and intoxication: A global leading concern for human health. Food Saf. Preserv. 2018:307–352. doi: 10.1016/b978-0-12-814956-0.00011-1. DOI
Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3:529–563. doi: 10.3934/microbiol.2017.3.529. PubMed DOI PMC
Schirone M., Visciano P., Tofalo R., Suzzi G. Editorial: Foodborne pathogens: Hygiene and safety. Front. Microbiol. 2019;10:1974. doi: 10.3389/fmicb.2019.01974. PubMed DOI PMC
Bogdanovicova K., Kamenik J., Dorotikova K., Strejcek J., Krepelova S., Duskova M., Harustiakova D. Occurrence of foodborne agents at food service facilities in the Czech Republic. J. Food Protect. 2019;82:1096–1103. doi: 10.4315/0362-028X.JFP-18-338. PubMed DOI
Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food Industry: Health aspects and control methods. Front. Microbiol. 2018;9:9. doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC
Marriott N.G., Schilling M.W., Gravani R.B. Principles of Food Sanitation. Springer International Publishing; Cham, Switzerland: 2018.
Zhao X., Zhao F., Wang J., Zhong N. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Adv. 2017;7:36670–36683. doi: 10.1039/C7RA02497E. DOI
Donaghy J.A., Jagadeesan B., Goodburn K., Grunwald L., Jensen O.N., Jespers A., Kanagachandran K., Lafforgue H., Seefelder W., Quentin M.-C. Relationship of sanitizers, disinfectants, and cleaning agents with antimicrobial resistance. J. Food Protect. 2019;82:889–902. doi: 10.4315/0362-028X.JFP-18-373. PubMed DOI
Nahar S., Mizan M.F.R., Ha A.J., Ha S.-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr. Rev. Food Sci. Food Saf. 2018;17:1484–1502. doi: 10.1111/1541-4337.12382. PubMed DOI
Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016;14:563–575. doi: 10.1038/nrmicro.2016.94. PubMed DOI
Carrascosa C., Raheem D., Ramos F., Saraiva A., Raposo A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health. 2021;18:2014. doi: 10.3390/ijerph18042014. PubMed DOI PMC
Dong P., Wang H., Fang T., Wang Y., Ye Q. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ. Int. 2019;125:90–96. doi: 10.1016/j.envint.2019.01.050. PubMed DOI
Founou L.L., Founou R.C., Essack S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016;7:1881. doi: 10.3389/fmicb.2016.01881. PubMed DOI PMC
Sharma D., Misba L., Khan A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019;8:1–10. doi: 10.1186/s13756-019-0533-3. PubMed DOI PMC
Costa F., Sousa D.M., Parreira P., Lamghari M., Gomes P., Martins M.C.L. N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-17310-4. PubMed DOI PMC
Kregiel D., Rygala A., Kolesinska B., Nowacka M., Herc A.S., Kowalewska A. Antimicrobial and antibiofilm N-Acetyl-l-cysteine grafted siloxane polymers with potential for use in water systems. Int. J. Mol. Sci. 2019;20:2011. doi: 10.3390/ijms20082011. PubMed DOI PMC
Domenech M., García E. N-Acetyl-l-cysteine and cysteamine: New strategies against mixed biofilms of non-encapsulated Streptococcus pneumoniae and non-typeable Haemophilus influenzae. Antimicrob. Agents Chemother. 2017;61:e01992-16. doi: 10.1128/AAC.01992-16. PubMed DOI PMC
Li X., Kim J., Wu J., Ahamed A.I., Wang Y., Martins-Green M. N-acetyl-cysteine and mechanisms involved in resolution of chronic wound biofilm. J. Diabetes Res. 2020;2020:9589507. doi: 10.1155/2020/9589507. PubMed DOI PMC
Blasi F., Page C., Rossolini G.M., Pallecchi L., Matera M.G., Rogliani P., Cazzola M. The effect of N -acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir. Med. 2016;117:190–197. doi: 10.1016/j.rmed.2016.06.015. PubMed DOI
Liu Y., Liu K., Wang N., Zhang H. N-acetylcysteine induces apoptosis via the mitochondria-dependent pathway but not via endoplasmic reticulum stress in H9c2 cells. Mol. Med. Rep. 2017;16:6626–6633. doi: 10.3892/mmr.2017.7442. PubMed DOI PMC
Nakagawa Y., Suzuki T., Nakajima K., Inomata A., Ogata A., Nakae D. Effects of N-Acetyl-l-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes. Arch. Toxicol. 2014;88:115–126. doi: 10.1007/s00204-013-1096-3. PubMed DOI
Liu G., Zhong H., Yang X., Liu Y., Shao B., Liu Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnol. Bioeng. 2018;115:796–814. doi: 10.1002/bit.26517. PubMed DOI
Soberón-Chávez G., González-Valdez A., Soto-Aceves M.P., Cocotl-Yañez M. Rhamnolipids produced by Pseudomonas: From molecular genetics to the market. Microb. Biotechnol. 2020;14:136–146. doi: 10.1111/1751-7915.13700. PubMed DOI PMC
Aleksic I., Petkovic M., Jovanovic M., Milivojevic D., Vasiljevic B., Nikodinovic-Runic J., Senerovic L. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front. Microbiol. 2017;8:2454. doi: 10.3389/fmicb.2017.02454. PubMed DOI PMC
Sun L., Forauer E.C., Brown S.R.B., D’Amico D.J. Application of bioactive glycolipids to control Listeria monocytogenes biofilms and as post-lethality contaminants in milk and cheese. Food Microbiol. 2020;95:103683. doi: 10.1016/j.fm.2020.103683. PubMed DOI
Chong H., Li Q. Microbial production of rhamnolipids: Opportunities, challenges and strategies. Microb. Cell Fact. 2017;16:1–12. doi: 10.1186/s12934-017-0753-2. PubMed DOI PMC
Xu N., Liu S., Xu L., Zhou J., Xin F., Zhang W., Qian X., Li M., Dong W., Jiang M. Enhanced rhamnolipids production using a novel bioreactor system based on integrated foam-control and repeated fed-batch fermentation strategy. Biotechnol. Biofuels. 2020;13:1–10. doi: 10.1186/s13068-020-01716-w. PubMed DOI PMC
Bakkar M.R., Faraag A.H.I., Soliman E.R.S., Fouda M.S., Sarguos A.M.M., McLean G.R., Hebishy A.M.S., Elkhouly G.E., Raya N.R., Abo-zeid Y. Rhamnolipids nano-micelles as a potential hand sanitizer. Antibiotics. 2021;10:751. doi: 10.3390/antibiotics10070751. PubMed DOI PMC
Francolini I., Piozzi A., Donelli G. Usnic Acid: Potential role in management of wound infections. Adv. Exp. Med. Biol. 2019;1214:31–41. doi: 10.1007/5584_2018_260. PubMed DOI
Ahmad R., Borowiec P., Falck-Ytter A.B., Strætkvern K.O. Extraction, solubility and antimicrobial activity of (-) usnic acid in ethanol, a pharmaceutically relevant solvent. Nat. Prod. Commun. 2017;12:1934578X1701200. doi: 10.1177/1934578X1701200725. DOI
Maciąg-Dorszyńska M., Węgrzyn G., Guzow-Krzemińska B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 2014;353:57–62. doi: 10.1111/1574-6968.12409. PubMed DOI
Kartsev V., Geronikaki A., Petrou A., Lichitsky B., Smiljkovic M., Kostic M., Radanovic O., Soković M. Design, synthesis and antimicrobial activity of usnic acid derivatives. Med. Chem. Comm. 2018;9:870–882. doi: 10.1039/C8MD90056F. PubMed DOI PMC
Kaskatepe B., Yildiz S. Rhamnolipid biosurfactants produced by Pseudomonas species. Braz. Arch. Biol. Technol. 2016;59 doi: 10.1590/1678-4324-2016160786. DOI
Culikova H. Bachelor’s Thesis. University of Chemistry and Technology; Prague, Czech Republic: 2015. Effect of Usnic Acid on Biofilm Formation.
Thi Nguyen H.G., Vinh Nguyen N. Synthesis, structure elucidation and cytotoxicity of (+)-usnic acid derivatives on U87MG glioblastoma cells. Nat. Prod. Chem. Res. 2016;4:2. doi: 10.4172/2329-6836.1000216. DOI
Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014;28:1317–1330. doi: 10.1096/fj.13-235440. PubMed DOI
Ferrer M.D., Rodriguez J.C., Álvarez L., Artacho A., Royo G., Mira A. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J. Appl. Microbiol. 2017;122:640–650. doi: 10.1111/jam.13368. PubMed DOI
Chlumsky O., Purkrtova S., Michova H., Sykorova H., Slepicka P., Fajstavr D., Ulbrich P., Viktorova J., Demnerova K. Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens. Int. J. Mol. Sci. 2021;22:7892. doi: 10.3390/ijms22157892. PubMed DOI PMC
Chlumsky O., Purkrtova S., Michova T.H., Svarcova F.V., Slepicka P., Fajstavr D., Ulbrich P., Demnerova K. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens. Biofouling. 2020;36:222–233. doi: 10.1080/08927014.2020.1751132. PubMed DOI
Drago L., Agrappi S., Bortolin M., Toscano M., Romanò C., De Vecchi E. How to study biofilms after microbial colonization of materials used in orthopaedic implants. Int. J. Mol. Sci. 2016;17:293. doi: 10.3390/ijms17030293. PubMed DOI PMC
Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Stranska-Zachariasova M., Vitek L., Hajslova J., Ruml T. In silico and In vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxicol. Eff. Mycotoxins Target Cells. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC
Parker A.E., Christen J.A., Lorenz L., Smith H. Optimal surface estimation and thresholding of confocal microscope images of biofilms using Beer’s Law. J. Microbiol. Meth. 2020;174:105943. doi: 10.1016/j.mimet.2020.105943. PubMed DOI
Kragh K.N., Alhede M., Kvich L., Bjarnsholt T. Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm. 2019;1:100006. doi: 10.1016/j.bioflm.2019.100006. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013. [(accessed on 10 October 2020)]. Available online: https://www.R-project.org/2020.