Evaluation of the Antimicrobial Efficacy of N-Acetyl-l-Cysteine, Rhamnolipids, and Usnic Acid-Novel Approaches to Fight Food-Borne Pathogens

. 2021 Oct 20 ; 22 (21) : . [epub] 20211020

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34768739

Grantová podpora
No. 17-15936S Grantová Agentura České Republiky
DMR-1455247 The National Science Foundation
MSMT No 21-SVV/2020 Ministerstvo Školství, Mládeže a Tělovýchovy

In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-l-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.

Zobrazit více v PubMed

AL-Mamun M., Chowdhury T., Biswas B., Absar N. Food poisoning and intoxication: A global leading concern for human health. Food Saf. Preserv. 2018:307–352. doi: 10.1016/b978-0-12-814956-0.00011-1. DOI

Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3:529–563. doi: 10.3934/microbiol.2017.3.529. PubMed DOI PMC

Schirone M., Visciano P., Tofalo R., Suzzi G. Editorial: Foodborne pathogens: Hygiene and safety. Front. Microbiol. 2019;10:1974. doi: 10.3389/fmicb.2019.01974. PubMed DOI PMC

Bogdanovicova K., Kamenik J., Dorotikova K., Strejcek J., Krepelova S., Duskova M., Harustiakova D. Occurrence of foodborne agents at food service facilities in the Czech Republic. J. Food Protect. 2019;82:1096–1103. doi: 10.4315/0362-028X.JFP-18-338. PubMed DOI

Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food Industry: Health aspects and control methods. Front. Microbiol. 2018;9:9. doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC

Marriott N.G., Schilling M.W., Gravani R.B. Principles of Food Sanitation. Springer International Publishing; Cham, Switzerland: 2018.

Zhao X., Zhao F., Wang J., Zhong N. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Adv. 2017;7:36670–36683. doi: 10.1039/C7RA02497E. DOI

Donaghy J.A., Jagadeesan B., Goodburn K., Grunwald L., Jensen O.N., Jespers A., Kanagachandran K., Lafforgue H., Seefelder W., Quentin M.-C. Relationship of sanitizers, disinfectants, and cleaning agents with antimicrobial resistance. J. Food Protect. 2019;82:889–902. doi: 10.4315/0362-028X.JFP-18-373. PubMed DOI

Nahar S., Mizan M.F.R., Ha A.J., Ha S.-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr. Rev. Food Sci. Food Saf. 2018;17:1484–1502. doi: 10.1111/1541-4337.12382. PubMed DOI

Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016;14:563–575. doi: 10.1038/nrmicro.2016.94. PubMed DOI

Carrascosa C., Raheem D., Ramos F., Saraiva A., Raposo A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health. 2021;18:2014. doi: 10.3390/ijerph18042014. PubMed DOI PMC

Dong P., Wang H., Fang T., Wang Y., Ye Q. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environ. Int. 2019;125:90–96. doi: 10.1016/j.envint.2019.01.050. PubMed DOI

Founou L.L., Founou R.C., Essack S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016;7:1881. doi: 10.3389/fmicb.2016.01881. PubMed DOI PMC

Sharma D., Misba L., Khan A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019;8:1–10. doi: 10.1186/s13756-019-0533-3. PubMed DOI PMC

Costa F., Sousa D.M., Parreira P., Lamghari M., Gomes P., Martins M.C.L. N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-17310-4. PubMed DOI PMC

Kregiel D., Rygala A., Kolesinska B., Nowacka M., Herc A.S., Kowalewska A. Antimicrobial and antibiofilm N-Acetyl-l-cysteine grafted siloxane polymers with potential for use in water systems. Int. J. Mol. Sci. 2019;20:2011. doi: 10.3390/ijms20082011. PubMed DOI PMC

Domenech M., García E. N-Acetyl-l-cysteine and cysteamine: New strategies against mixed biofilms of non-encapsulated Streptococcus pneumoniae and non-typeable Haemophilus influenzae. Antimicrob. Agents Chemother. 2017;61:e01992-16. doi: 10.1128/AAC.01992-16. PubMed DOI PMC

Li X., Kim J., Wu J., Ahamed A.I., Wang Y., Martins-Green M. N-acetyl-cysteine and mechanisms involved in resolution of chronic wound biofilm. J. Diabetes Res. 2020;2020:9589507. doi: 10.1155/2020/9589507. PubMed DOI PMC

Blasi F., Page C., Rossolini G.M., Pallecchi L., Matera M.G., Rogliani P., Cazzola M. The effect of N -acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir. Med. 2016;117:190–197. doi: 10.1016/j.rmed.2016.06.015. PubMed DOI

Liu Y., Liu K., Wang N., Zhang H. N-acetylcysteine induces apoptosis via the mitochondria-dependent pathway but not via endoplasmic reticulum stress in H9c2 cells. Mol. Med. Rep. 2017;16:6626–6633. doi: 10.3892/mmr.2017.7442. PubMed DOI PMC

Nakagawa Y., Suzuki T., Nakajima K., Inomata A., Ogata A., Nakae D. Effects of N-Acetyl-l-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes. Arch. Toxicol. 2014;88:115–126. doi: 10.1007/s00204-013-1096-3. PubMed DOI

Liu G., Zhong H., Yang X., Liu Y., Shao B., Liu Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnol. Bioeng. 2018;115:796–814. doi: 10.1002/bit.26517. PubMed DOI

Soberón-Chávez G., González-Valdez A., Soto-Aceves M.P., Cocotl-Yañez M. Rhamnolipids produced by Pseudomonas: From molecular genetics to the market. Microb. Biotechnol. 2020;14:136–146. doi: 10.1111/1751-7915.13700. PubMed DOI PMC

Aleksic I., Petkovic M., Jovanovic M., Milivojevic D., Vasiljevic B., Nikodinovic-Runic J., Senerovic L. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front. Microbiol. 2017;8:2454. doi: 10.3389/fmicb.2017.02454. PubMed DOI PMC

Sun L., Forauer E.C., Brown S.R.B., D’Amico D.J. Application of bioactive glycolipids to control Listeria monocytogenes biofilms and as post-lethality contaminants in milk and cheese. Food Microbiol. 2020;95:103683. doi: 10.1016/j.fm.2020.103683. PubMed DOI

Chong H., Li Q. Microbial production of rhamnolipids: Opportunities, challenges and strategies. Microb. Cell Fact. 2017;16:1–12. doi: 10.1186/s12934-017-0753-2. PubMed DOI PMC

Xu N., Liu S., Xu L., Zhou J., Xin F., Zhang W., Qian X., Li M., Dong W., Jiang M. Enhanced rhamnolipids production using a novel bioreactor system based on integrated foam-control and repeated fed-batch fermentation strategy. Biotechnol. Biofuels. 2020;13:1–10. doi: 10.1186/s13068-020-01716-w. PubMed DOI PMC

Bakkar M.R., Faraag A.H.I., Soliman E.R.S., Fouda M.S., Sarguos A.M.M., McLean G.R., Hebishy A.M.S., Elkhouly G.E., Raya N.R., Abo-zeid Y. Rhamnolipids nano-micelles as a potential hand sanitizer. Antibiotics. 2021;10:751. doi: 10.3390/antibiotics10070751. PubMed DOI PMC

Francolini I., Piozzi A., Donelli G. Usnic Acid: Potential role in management of wound infections. Adv. Exp. Med. Biol. 2019;1214:31–41. doi: 10.1007/5584_2018_260. PubMed DOI

Ahmad R., Borowiec P., Falck-Ytter A.B., Strætkvern K.O. Extraction, solubility and antimicrobial activity of (-) usnic acid in ethanol, a pharmaceutically relevant solvent. Nat. Prod. Commun. 2017;12:1934578X1701200. doi: 10.1177/1934578X1701200725. DOI

Maciąg-Dorszyńska M., Węgrzyn G., Guzow-Krzemińska B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 2014;353:57–62. doi: 10.1111/1574-6968.12409. PubMed DOI

Kartsev V., Geronikaki A., Petrou A., Lichitsky B., Smiljkovic M., Kostic M., Radanovic O., Soković M. Design, synthesis and antimicrobial activity of usnic acid derivatives. Med. Chem. Comm. 2018;9:870–882. doi: 10.1039/C8MD90056F. PubMed DOI PMC

Kaskatepe B., Yildiz S. Rhamnolipid biosurfactants produced by Pseudomonas species. Braz. Arch. Biol. Technol. 2016;59 doi: 10.1590/1678-4324-2016160786. DOI

Culikova H. Bachelor’s Thesis. University of Chemistry and Technology; Prague, Czech Republic: 2015. Effect of Usnic Acid on Biofilm Formation.

Thi Nguyen H.G., Vinh Nguyen N. Synthesis, structure elucidation and cytotoxicity of (+)-usnic acid derivatives on U87MG glioblastoma cells. Nat. Prod. Chem. Res. 2016;4:2. doi: 10.4172/2329-6836.1000216. DOI

Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014;28:1317–1330. doi: 10.1096/fj.13-235440. PubMed DOI

Ferrer M.D., Rodriguez J.C., Álvarez L., Artacho A., Royo G., Mira A. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J. Appl. Microbiol. 2017;122:640–650. doi: 10.1111/jam.13368. PubMed DOI

Chlumsky O., Purkrtova S., Michova H., Sykorova H., Slepicka P., Fajstavr D., Ulbrich P., Viktorova J., Demnerova K. Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens. Int. J. Mol. Sci. 2021;22:7892. doi: 10.3390/ijms22157892. PubMed DOI PMC

Chlumsky O., Purkrtova S., Michova T.H., Svarcova F.V., Slepicka P., Fajstavr D., Ulbrich P., Demnerova K. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens. Biofouling. 2020;36:222–233. doi: 10.1080/08927014.2020.1751132. PubMed DOI

Drago L., Agrappi S., Bortolin M., Toscano M., Romanò C., De Vecchi E. How to study biofilms after microbial colonization of materials used in orthopaedic implants. Int. J. Mol. Sci. 2016;17:293. doi: 10.3390/ijms17030293. PubMed DOI PMC

Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Stranska-Zachariasova M., Vitek L., Hajslova J., Ruml T. In silico and In vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxicol. Eff. Mycotoxins Target Cells. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC

Parker A.E., Christen J.A., Lorenz L., Smith H. Optimal surface estimation and thresholding of confocal microscope images of biofilms using Beer’s Law. J. Microbiol. Meth. 2020;174:105943. doi: 10.1016/j.mimet.2020.105943. PubMed DOI

Kragh K.N., Alhede M., Kvich L., Bjarnsholt T. Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm. 2019;1:100006. doi: 10.1016/j.bioflm.2019.100006. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013. [(accessed on 10 October 2020)]. Available online: https://www.R-project.org/2020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...