Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-15936S
Grantová Agentura České Republiky
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34360657
PubMed Central
PMC8346086
DOI
10.3390/ijms22157892
PII: ijms22157892
Knihovny.cz E-zdroje
- Klíčová slova
- acute cytotoxicity, antimicrobial properties, food-borne pathogens, minimum inhibitory concentrations, palladium nanoparticles, platinum nanoparticles,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- Bacteria klasifikace účinky léků růst a vývoj MeSH
- fibroblasty cytologie účinky léků MeSH
- kovové nanočástice aplikace a dávkování chemie MeSH
- kultivované buňky MeSH
- ledviny cytologie účinky léků MeSH
- lidé MeSH
- nemoci přenášené potravou prevence a kontrola MeSH
- palladium chemie MeSH
- platina chemie MeSH
- potravinářská mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- palladium MeSH
- platina MeSH
Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3-2.4 (PdNPs) and 0.8-2.0 (PtNPs), average inhibitory rates of 55.2-99% for PdNPs and of 83.8-99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25-44.5 mg/L for PdNPs and 50.5-101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.
Zobrazit více v PubMed
Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3:529–563. doi: 10.3934/microbiol.2017.3.529. PubMed DOI PMC
Schirone M., Visciano P., Tofalo R., Suzzi G. Editorial: Foodborne Pathogens: Hygiene and Safety. Front. Microbiol. 2019;10:1974. doi: 10.3389/fmicb.2019.01974. PubMed DOI PMC
Nespolo N.M. The Behavior of Consumers and Producers of Food of Animal Origin and Their Impacts in One Health. Front. Vet. Sci. 2021;8:607. doi: 10.3389/fvets.2021.641634. PubMed DOI PMC
Berlanga M., Guerrero R. Living together in biofilms: The microbial cell factory and its biotechnological im-plications. Microb Cell Fact. 2016;15:165. doi: 10.1186/s12934-016-0569-5. PubMed DOI PMC
Santos A.L.S.D., Galdino A.C.M., Mello T.P., Ramos L.S., Branquinha M.H., Bolognese A.M., Columbano Neto J., Roudbary M. What are the advantages of living in a community? A microbial biofilm perspective! Mem. Inst. Oswaldo Cruz. 2018;113:e180212. PubMed PMC
Gebreyohannes G., Nyerere A., Bii C., Sbhatu D.B. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon. 2019;5:e02192. doi: 10.1016/j.heliyon.2019.e02192. PubMed DOI PMC
Rumbaugh K.P., Sauer K. Biofilm dispersion. Nat. Rev. Microbiol. 2020;18:571–586. doi: 10.1038/s41579-020-0385-0. PubMed DOI PMC
Awad T.S., Asker D., Hatton B.D. Food-safe modification of stainless steel food-processing surfaces to re-duce bacterial biofilms. ACS Appl. Mater. Interfaces. 2018;10:22902–22912. doi: 10.1021/acsami.8b03788. PubMed DOI
Zhao X., Zhao F., Wang J., Zhong N. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Adv. 2017;7:36670–36683. doi: 10.1039/C7RA02497E. DOI
Chew S., Yang L. Encyclopedia of Food and Health. Academic Press; Cambridge, MA, USA: 2016. Biofilms; pp. 407–415. DOI
Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016;14:563–575. doi: 10.1038/nrmicro.2016.94. PubMed DOI
Han C., Romero N., Fischer S., Dookran J., Berger A., Doiron A.L. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 2017;6:383–404. doi: 10.1515/ntrev-2016-0054. DOI
González A., Riego A., Vega V., García J., Galié S., del Río I.G., de Yuso M.M., Villar C., Lombó F., De la Prida V. Functional Antimicrobial Surface Coatings Deposited onto Nanostructured 316L Food-Grade Stainless Steel. Nanomaterials. 2021;11:1055. doi: 10.3390/nano11041055. PubMed DOI PMC
Marriott N.G., Schilling M.W., Gravani R.B. Principles of Food Sanitation. Springer International Publishing; Cham, Switzerland: 2018.
Lahiri D., Nag M., Sheikh H.I., Sarkar T., Edinur H.A., Pati S., Ray R.R. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front. Microbiol. 2021;12:180. doi: 10.3389/fmicb.2021.636588. PubMed DOI PMC
Qayyum S., Khan A.U. Nanoparticles vs. biofilms: A battle against another paradigm of antibiotic resistance. MedChemComm. 2016;7:1479–1498. doi: 10.1039/C6MD00124F. DOI
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Mahira S., Jain A., Khan W., Domb A.J. Antimicrobial Materials for Biomedical Applications. Royal Society of Chemistry; London, UK: 2019. Chapter 1: Antimicrobial Materials—An Overview; pp. 1–37.
Lee H., Lee D.G. A Novel Strategy for Antimicrobial Agents: Silver Nanoparticles, In Metal Nanoparticles in Pharma. Springer; Cham, Switzerland: 2017. pp. 139–153.
Masri A., Anwar A., Khan N.A., Siddiqui R. The Use of Nanomedicine for Targeted Therapy against Bacterial Infections. Antibiotics. 2019;8:260. doi: 10.3390/antibiotics8040260. PubMed DOI PMC
McClements D.J., Xiao H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Sci. Food. 2017;1:1–13. doi: 10.1038/s41538-017-0005-1. PubMed DOI PMC
Ameta S.K., Rai A.K., Hiran D., Ameta R., Ameta S.C. Use of nanomaterials in food science. In: Ghor-banpour M., Bhargava P., Varma A., Choudhary D., editors. Biogenic Nano-Particles and Their Use in Agro-Ecosystems. Springer; Singapore: 2020.
Pandhi S., Mahato D.K., Kumar A. Overview of Green Nanofabrication Technologies for Food Quality and Safety Applications. Food Rev. Int. 2021:1–21. doi: 10.1080/87559129.2021.1904254. DOI
Otari S.V., Patel S.K.S., Lee J.H., Jeong J.-H. A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv. 2016;6:86808–86816. doi: 10.1039/C6RA14688K. DOI
Samuggam S., Chinni S., Mutusamy P., Gopinath S., Anbu P., Venugopal V., Reddy L., Enugutti B. Green Synthesis and Characterization of Silver Nanoparticles Using Spondias mombin Extract and Their Antimicrobial Activity against Biofilm-Producing Bacteria. Molecules. 2021;26:2681. doi: 10.3390/molecules26092681. PubMed DOI PMC
Mittal D., Kaur G., Singh P., Yadav K., Ali S.A. Nanoparticle-based sustainable agriculture and food Science: Recent advances and future uutlook. Front. Nanotechnol. 2020;2:10. doi: 10.3389/fnano.2020.579954. DOI
Lencova S., Zdenkova K., Jencova V., Demnerova K., Zemanova K., Kolackova R., Hozdova K., Stiborova H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. Nanomaterials. 2021;11:480. doi: 10.3390/nano11020480. PubMed DOI PMC
Halicka K., Cabaj J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021;22:6357. doi: 10.3390/ijms22126357. PubMed DOI PMC
Kumar A., Park G.D., Patel S.K., Kondaveeti S., Otari S., Anwar M.Z., Kalia V.C., Singh Y., Kim S.C., Cho B.-K., et al. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 2019;359:1252–1264. doi: 10.1016/j.cej.2018.11.052. DOI
Chiari-Andréo B.G., de Almeida-Cincotto M.G.J., Oshiro J.A., Taniguchi C.Y.Y., Chiavacci L.A., Isaac V.L.B. Nanoparticles in Pharmacotherapy. Elsevier BV; Amsterdam, The Netherlands: 2019. Nanoparticles for cosmetic use and its application; pp. 113–146.
Echiegu E.A. Nanotechnology as a Tool for Enhanced Renewable Energy Application in Developing Countries. J. Fundam. Renew. Energy Appl. 2016;6 doi: 10.4172/2090-4541.1000e113. DOI
Wang Y., Pi C., Feng X., Hou Y., Zhao L., Wei Y. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int. J. Nanomed. 2020;15:6295–6310. doi: 10.2147/IJN.S257269. PubMed DOI PMC
Hassan A.A., Mansour M.K., El Hamaky A.M., El Ahl R.M.S., Oraby N.H. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems. Elsevier BV; Amsterdam The Netherlands: 2020. Nanomaterials and nanocomposite applications in veterinary medicine; pp. 583–638.
Mohajerani A., Burnett L., Smith J.V., Kurmus H., Milas J., Arulrajah A., Horpibulsuk S., Kadir A.A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials. 2019;12:3052. doi: 10.3390/ma12193052. PubMed DOI PMC
Gupta S.K., Sudarshan K., Kadam R. Optical nanomaterials with focus on rare earth doped oxide: A Review. Mater. Today Commun. 2021;27:102277. doi: 10.1016/j.mtcomm.2021.102277. DOI
Auría-Soro C., Nesma T., Juanes-Velasco P., Landeira-Viñuela A., Fidalgo-Gomez H., Acebes-Fernandez V., Gongora R., Parra M.J.A., Manzano-Roman R., Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. Nanomaterials. 2019;9:1365. doi: 10.3390/nano9101365. PubMed DOI PMC
Chlumsky O., Purkrtova S., Turonova H.M., Fuchsova V.S., Slepicka P., Fajstavr D., Ulbrich P., Demnerova K. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens. Biofouling. 2020;36:222–233. doi: 10.1080/08927014.2020.1751132. PubMed DOI
Hashimoto M., Yanagiuchi H., Kitagawa H., Honda Y. Inhibitory effect of platinum nanoparticles on bio-film formation of oral bacteria. Nano. Biomed. 2017;9:77–82.
Pedone D., Moglianetti M., De Luca E., Bardi G., Pompa P.P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017;46:4951–4975. doi: 10.1039/C7CS00152E. PubMed DOI
Hullo M., Grall R., Perrot Y., Mathé C., Ménard V., Yang X., Lacombe S., Porcel E., Villagrasa C., Chevillard S., et al. Radiation Enhancer Effect of Platinum Nanoparticles in Breast Cancer Cell Lines: In Vitro and In Silico Analyses. Int. J. Mol. Sci. 2021;22:4436. doi: 10.3390/ijms22094436. PubMed DOI PMC
Naseer B., Srivastava G., Qadri O., Faridi S., Islam R., Younis K. Importance and health hazards of na-noparticles used in the food industry. Nanotechnol. Rev. 2018;7:623–641. doi: 10.1515/ntrev-2018-0076. DOI
Adams C.P., Walker K.A., Obare S.O., Docherty K.M. Size-dependent antimicrobial effects of novel palla-dium nanoparticles. PLoS ONE. 2014;9:e85981. doi: 10.1371/journal.pone.0085981. PubMed DOI PMC
Manikandan V., Velmurugan P., Park J.-H., Lovanh N., Seo S.-K., Jayanthi P., Park Y.-J., Cho M., Oh B.-T. Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract. Mater. Lett. 2016;185:335–338. doi: 10.1016/j.matlet.2016.08.120. DOI
Staszek M., Siegel J., Kolarova K., Rimpelova S., Švorčík V. Formation and antibacterial action of Pt and Pd nanoparticles sputtered into liquid. Micro Nano Lett. 2014;9:778–781. doi: 10.1049/mnl.2014.0345. DOI
Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: Understanding the mechanisms behind an-tibacterial activity. J. Nanobiotechnol. 2017;15:65. doi: 10.1186/s12951-017-0308-z. PubMed DOI PMC
Qin N., Tan X., Jiao Y., Liu L., Zhao W., Yang S., Jia A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2015;4:5467. doi: 10.1038/srep05467. PubMed DOI PMC
Microchem Laboratory Log and Percent Reductions in Microbiology and Antimicrobial Testing. [(accessed on 4 May 2021)]; Available online: http://archive.today/2021.05.04-100145/https://microchemlab.com/information/log-and-percent-reductions-microbiology-and-antimicrobial-testing.
Tran V.N., Viktorova J., Augustynkova K., Jelenova N., Dobiasova S., Rehorova K., Fenclova M., Stranska-Zachariasova M., Vitek L., Hajslova J., et al. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins. 2020;12:148. doi: 10.3390/toxins12030148. PubMed DOI PMC