Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FPBT_2020_006
Specific university research
SGS-2019-4085
Technical University of Liberec
PubMed
33668651
PubMed Central
PMC7918127
DOI
10.3390/nano11020480
PII: nano11020480
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, antimicrobial activity, filtration apparatus, long-term stability, nanofiber, permeability, polyamide,
- Publikační typ
- časopisecké články MeSH
Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials' inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3-6.8 and a retention rate of 96.7-100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications.
Zobrazit více v PubMed
Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi: 10.1016/j.ejpb.2018.02.022. PubMed DOI
Bowler P.G., Duerden B.I., Armstrong D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev. 2001;14:244–269. doi: 10.1128/CMR.14.2.244-269.2001. PubMed DOI PMC
Hawn M.T., Vick C.C., Richman J., Holman W., Deierhoi R.J., Graham L.A., Henderson W.G., Itani K.M.F. Surgical Site Infection Prevention: Time to Move Beyond the Surgical Care Improvement Program. Ann. Surg. 2011;254 doi: 10.1097/SLA.0b013e31822c6929. PubMed DOI
Cardona A.F., Wilson S.E. Skin and Soft-Tissue Infections: A Critical Review and the Role of Telavancin in Their Treatment. Clin. Infect. Dis. 2015;61:S69–S78. doi: 10.1093/cid/civ528. PubMed DOI
Jayakumar R., Prabaharan M., Kumar P.S., Nair S., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011;29:322–337. doi: 10.1016/j.biotechadv.2011.01.005. PubMed DOI
Tao O., Wu D.T., Pham H., Pandey N., Tran S.D. Nanomaterials in Craniofacial Tissue Regeneration: A Review. Appl. Sci. 2019;9:317. doi: 10.3390/app9020317. DOI
Krchova S., Dzan L., Lukas D., Mikes P., Jencova V., Horakova J., Pilarova K. Nanofibers in skin wound healing. Česká Dermatovenerol. 2014;4:234–240.
Širc J., Hobzová R., Kostina N., Munzarová M., Juklickova M., Lhotka M., Kubinová Š., Zajicova A., Michalek J. Morphological Characterization of Nanofibers: Methods and Application in Practice. J. Nanomater. 2012;2012:1–14. doi: 10.1155/2012/327369. DOI
Lubasova D., Netravali A., Parker J., Ingel B. Bacterial filtration efficiency of green soy protein based nanofiber air filter. J. Nanosci. Nanotechnol. 2014;14:4891–4898. doi: 10.1166/jnn.2014.8729. PubMed DOI
Lemma S.M., Esposito A., Mason M., Brusetti L., Cesco S., Scampicchio M. Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. J. Food Eng. 2015;157:1–6. doi: 10.1016/j.jfoodeng.2015.02.005. DOI
Sato A., Wang R., Ma H., Hsiao B.S., Chu B. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. QJM Int. J. Med. 2011;60:201–209. doi: 10.1093/jmicro/dfr019. PubMed DOI
Wang R., Guan S., Sato A., Wang X., Wang Z., Yang R., Hsiao B.S., Chu B. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2013;446:376–382. doi: 10.1016/j.memsci.2013.06.020. DOI
Ma H., Hsiao B.S., Chu B. Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. J. Membr. Sci. 2014;452:446–452. doi: 10.1016/j.memsci.2013.10.047. DOI
Contardi M., Heredia-Guerrero J.A., Perotto G., Valentini P., Pompa P.P., Spanò R., Goldoni L., Bertorelli R., Athanassiou A., Bayer I.S. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur. J. Pharm. Sci. 2017;104:133–144. doi: 10.1016/j.ejps.2017.03.044. PubMed DOI
Monteiro N., Martins M., Martins A., Fonseca N.A., Moreira J.N., Reis R.L., Neves N.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 2015;18:196–205. doi: 10.1016/j.actbio.2015.02.018. PubMed DOI
Anbazhagan S., Thangavelu K.P. Application of tetracycline hydrochloride loaded-fungal chitosan and Aloe vera extract based composite sponges for wound dressing. J. Adv. Res. 2018;14:63–71. doi: 10.1016/j.jare.2018.05.005. PubMed DOI PMC
Anisha B., Biswas R., Chennazhi K., Jayakumar R. Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol. 2013;62:310–320. doi: 10.1016/j.ijbiomac.2013.09.011. PubMed DOI
Augustine R., Augustine A., Kalarikkal N., Thomas S. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog. Biomater. 2016;5:223–235. doi: 10.1007/s40204-016-0060-8. PubMed DOI PMC
Raguvaran R., Manuja A., Manuja B.K., Riyesh T., Singh S., Kesavan M., Dimri U. Sodium alginate and gum acacia hydrogels of zinc oxide nanoparticles reduce hemolytic and oxidative stress inflicted by zinc oxide nanoparticles on mammalian cells. Int. J. Biol. Macromol. 2017;101:967–972. doi: 10.1016/j.ijbiomac.2017.03.180. PubMed DOI
Archana D., Singh B.K., Dutta J., Dutta P. In Vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym. 2013;95:530–539. doi: 10.1016/j.carbpol.2013.03.034. PubMed DOI
Venkatasubbu G.D., Anusuya T. Investigation on Curcumin nanocomposite for wound dressing. Int. J. Biol. Macromol. 2017;98:366–378. doi: 10.1016/j.ijbiomac.2017.02.002. PubMed DOI
Güneş S., Tıhmınlıoğlu F. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int. J. Biol. Macromol. 2017;102:933–943. doi: 10.1016/j.ijbiomac.2017.04.080. PubMed DOI
Rossi S., Marciello M., Sandri G., Ferrari F., Bonferoni M.C., Papetti A., Caramella C., Dacarro C., Grisoli P. Wound Dressings Based on Chitosans and Hyaluronic Acid for the Release of Chlorhexidine Diacetate in Skin Ulcer Therapy. Pharm. Dev. Technol. 2007;12:415–422. doi: 10.1080/10837450701366903. PubMed DOI
Ambrogi V., Pietrella D., Nocchetti M., Casagrande S., Moretti V., De Marco S., Ricci M. Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J. Colloid Interface Sci. 2017;491:265–272. doi: 10.1016/j.jcis.2016.12.058. PubMed DOI
Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008;74:2171–2178. doi: 10.1128/AEM.02001-07. PubMed DOI PMC
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Ruschulte H., Franke M., Gastmeier P., Zenz S., Mahr K.H., Buchholz S., Hertenstein B., Hecker H., Piepenbrock S. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: A randomized controlled trial. Ann. Hematol. 2009;88:267–272. doi: 10.1007/s00277-008-0568-7. PubMed DOI
Groppo F., Ramacciato J., Simões R., Flório F., Sartoratto A. Antimicrobial activity of garlic, tea tree oil, and chlorhexidine against oral microorganisms. Int. Dent. J. 2002;52:433–437. doi: 10.1111/j.1875-595X.2002.tb00638.x. PubMed DOI
Ülkür E., Oncul O., Karagoz H., Yeniz E., Çelik#xF6;z B. Comparison of silver-coated dressing (Acticoat™), chlorhexidine acetate 0.5% (Bactigrass®), and fusidic acid 2% (Fucidin®) for topical antibacterial effect in methicillin-resistant Staphylococci-contaminated, full-skin thickness rat burn wounds. Burns. 2005;31:874–877. PubMed
Barbour M.E., Maddocks S.E., Grady H.J., Roper J.A., Bass M.D., Collins A.M., Dommett R.M., Saunders M. Chlorhexidine hexametaphosphate as a wound care material coating: Antimicrobial efficacy, toxicity and effect on healing. Nanomedicine. 2016;11:2049–2057. doi: 10.2217/nnm-2016-0084. PubMed DOI
Vianna M.E., Gomes B.P., Berber V.B., Zaia A.A., Ferraz C.C.R., De Souza-Filho F.J. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004;97:79–84. doi: 10.1016/S1079-2104(03)00360-3. PubMed DOI
Silvestre C., Duraccio D., Cimmino S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011;36:1766–1782. doi: 10.1016/j.progpolymsci.2011.02.003. DOI
Guibo Y., Qing Z., Yahong Z., Yin Y., Yumin Y. The Electrospun Polyamide 6 Nanofiber Membranes Used as High Efficiency Filter Materials: Filtration Potential, Thermal Treatment, and Their Continuous Production. J. Appl. Polym. Sci. 2013;128:1061–1069. doi: 10.1002/app.38211. DOI
Matulevicius J., Kliucininkas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014;2014:1–13. doi: 10.1155/2014/859656. DOI
Chong E.J., Phan T.T., Lim I.J., Zhang Y.Z., Bay B.H., Ramakrishna S., Lim C.T. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3:321–330. doi: 10.1016/j.actbio.2007.01.002. PubMed DOI
Shakespeare P.G. The role of skin substitutes in the treatment of burn injuries. Clin. Dermatol. 2005;23:413–418. doi: 10.1016/j.clindermatol.2004.07.015. PubMed DOI
Lencova S., Svarcova V., Stiborova H., Demnerova K., Jencova V., Hozdova K., Zdenkova K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces. 2020;13:2277–2288. doi: 10.1021/acsami.0c19016. PubMed DOI
Ryšánek P., Malý M., Čapková P., Kormunda M., Kolská Z., Gryndler M., Novák O., Hocelíková L., Bystrianský L., Munzarová M. Antibacterial modification of nylon-6 nanofibers: Structure, properties and antibacterial activity. J. Polym. Res. 2017;24:208.
De Vrieze S., Daels N., Lambert K., Decostere B., Hens Z., Van Hulle S., De Clerck K. Filtration performance of electrospun polyamide nanofibres loaded with bactericides. Text. Res. J. 2011;82:37–44. doi: 10.1177/0040517511416273. DOI
Qin N., Tan X., Jiao Y., Liu L., Zhao W., Yang S., Jia A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2015;4:5467. doi: 10.1038/srep05467. PubMed DOI PMC
Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI
Daels N., De Vrieze S., Sampers I., Decostere B., Westbroek P., Dumoulin A., Dejans P., De Clerck K., Van Hulle S. Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination. 2011;275:285–290. doi: 10.1016/j.desal.2011.03.012. DOI
Liu Y.-Q., Feng J.-W., Zhang C.-C., Teng Y., Liu Z., He J.-H. Air permeability of nanofiber membrane with hierarchical structure. Therm. Sci. 2018;22:1637–1643. doi: 10.2298/TSCI1804637L. DOI
Matsumoto H., Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes. 2011;1:249–264. doi: 10.3390/membranes1030249. PubMed DOI PMC
Monson L., Braunwarth M., Extrand C.W. Moisture absorption by various polyamides and their associated dimensional changes. J. Appl. Polym. Sci. 2007;107:355–363. doi: 10.1002/app.27057. DOI
Rogalsky S., Bardeau J.-F., Wu H., Lyoshina L., Bulko O., Tarasyuk O., Makhno S., Cherniavska T., Kyselov Y., Koo J.H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016;51:7716–7730. doi: 10.1007/s10853-016-0054-x. DOI
De Carvalho L., Peres B.U., Maezomo H., Shen Y., Haapasalo M., Manso A., Ko F., Carvalho R. Chlorhexidine-containing electrospun nanofibers: Effect of production mode on chlorhexidine release. Dent. Mater. 2017;33:e17–e18. doi: 10.1016/j.dental.2017.08.033. DOI
Xu X., Zhou M. Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym. 2008;9:685–690. doi: 10.1007/s12221-008-0108-z. DOI
Lala N.L., Ramaseshan R., Bojun L., Sundarrajan S., Barhate R., Ying-Jun L., Ramakrishna S. Fabrication of nanofibers with antimicrobial functionality used as filters: Protection against bacterial contaminants. Biotechnol. Bioeng. 2007;97:1357–1365. doi: 10.1002/bit.21351. PubMed DOI
Da Silva M.E.R., Danelon M., Souza J.A.S., Silva D.F., Pereira J.A., Pedrini D., De Camargo E.R., Delbem A.C.B., Duque C. Incorporation of chlorhexidine and nano-sized sodium trimetaphosphate into a glass-ionomer cement: Effect on mechanical and microbiological properties and inhibition of enamel demineralization. J. Dent. 2019;84:81–88. doi: 10.1016/j.jdent.2019.04.001. PubMed DOI
Sheikh F.A., Barakat N.A.M., Kanjwal M.A., Chaudhari A.A., Jung I.-H., Lee J.H., Kim H.Y. Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol. Res. 2009;17:688–696. doi: 10.1007/BF03218929. DOI
Zhang S., Shim W.S., Kim J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Mater. Des. 2009;30:3659–3666. doi: 10.1016/j.matdes.2009.02.017. DOI
Al-Attabi R., Dumée L.F., Kong L., Schütz J.A., Morsi Y. High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Adv. Eng. Mater. 2018;20:1700572. doi: 10.1002/adem.201700572. DOI
Zhao S., Song X., Bu X., Zhu C., Wang G., Liao F., Yang S., Wang M. Polydopamine dots as an ultrasensitive fluorescent probe switch for Cr(VI)in vitro. J. Appl. Polym. Sci. 2017;134:44784. doi: 10.1002/app.44784. DOI
Abrigo M., Kingshott P., McArthur S.L. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces. 2015;7:7644–7652. doi: 10.1021/acsami.5b00453. PubMed DOI
Patanaik A., Jacobs V., Anandjiwala R.D. Performance evaluation of electrospun nanofibrous membrane. J. Membr. Sci. 2010;352:136–142. doi: 10.1016/j.memsci.2010.02.009. DOI
Yun K.M., Hogan C.J., Matsubayashi Y., Kawabe M., Iskandar F., Okuyama K. Nanoparticle filtration by electrospun polymer fibers. Chem. Eng. Sci. 2007;62:4751–4759. doi: 10.1016/j.ces.2007.06.007. DOI
Nicosia A., Gieparda W., Foksowiczflaczyk J., Walentowska J., Wesolek D., Vazquez B., Prodi F., Belosi F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 2015;154:154–160. doi: 10.1016/j.seppur.2015.09.037. DOI
Mortimer C., Burke L., Wright C. Microbial Interactions with Nanostructures and their Importance for the Development of Electrospun Nanofibrous Materials used in Regenerative Medicine and Filtration. J. Microb. Biochem. Technol. 2016;8:195–201. doi: 10.4172/1948-5948.1000285. DOI
Tamayo-Ramos J.A., Rumbo C., Caso F., Rinaldi A., Garroni S., Notargiacomo A., Romero-Santacreu L., Cuesta-López S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS Appl. Mater. Interfaces. 2018;10:32773–32781. doi: 10.1021/acsami.8b07245. PubMed DOI
Kurinčič M., Jeršek B., Klančnik A., Možina S.S., Fink R., Dražić G., Raspor P., Bohinc K. Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential/Vpliv naravnih protimikrobnih snovi na bakterijsko hidrofobnost, adhezijo in zeta potencial. Arch. Ind. Hyg. Toxicol. 2016;67:39–45. doi: 10.1515/aiht-2016-67-2720. PubMed DOI