Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus

. 2021 Feb 13 ; 11 (2) : . [epub] 20210213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668651

Grantová podpora
A1_FPBT_2020_006 Specific university research
SGS-2019-4085 Technical University of Liberec

Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials' inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3-6.8 and a retention rate of 96.7-100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications.

Zobrazit více v PubMed

Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi: 10.1016/j.ejpb.2018.02.022. PubMed DOI

Bowler P.G., Duerden B.I., Armstrong D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev. 2001;14:244–269. doi: 10.1128/CMR.14.2.244-269.2001. PubMed DOI PMC

Hawn M.T., Vick C.C., Richman J., Holman W., Deierhoi R.J., Graham L.A., Henderson W.G., Itani K.M.F. Surgical Site Infection Prevention: Time to Move Beyond the Surgical Care Improvement Program. Ann. Surg. 2011;254 doi: 10.1097/SLA.0b013e31822c6929. PubMed DOI

Cardona A.F., Wilson S.E. Skin and Soft-Tissue Infections: A Critical Review and the Role of Telavancin in Their Treatment. Clin. Infect. Dis. 2015;61:S69–S78. doi: 10.1093/cid/civ528. PubMed DOI

Jayakumar R., Prabaharan M., Kumar P.S., Nair S., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011;29:322–337. doi: 10.1016/j.biotechadv.2011.01.005. PubMed DOI

Tao O., Wu D.T., Pham H., Pandey N., Tran S.D. Nanomaterials in Craniofacial Tissue Regeneration: A Review. Appl. Sci. 2019;9:317. doi: 10.3390/app9020317. DOI

Krchova S., Dzan L., Lukas D., Mikes P., Jencova V., Horakova J., Pilarova K. Nanofibers in skin wound healing. Česká Dermatovenerol. 2014;4:234–240.

Širc J., Hobzová R., Kostina N., Munzarová M., Juklickova M., Lhotka M., Kubinová Š., Zajicova A., Michalek J. Morphological Characterization of Nanofibers: Methods and Application in Practice. J. Nanomater. 2012;2012:1–14. doi: 10.1155/2012/327369. DOI

Lubasova D., Netravali A., Parker J., Ingel B. Bacterial filtration efficiency of green soy protein based nanofiber air filter. J. Nanosci. Nanotechnol. 2014;14:4891–4898. doi: 10.1166/jnn.2014.8729. PubMed DOI

Lemma S.M., Esposito A., Mason M., Brusetti L., Cesco S., Scampicchio M. Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. J. Food Eng. 2015;157:1–6. doi: 10.1016/j.jfoodeng.2015.02.005. DOI

Sato A., Wang R., Ma H., Hsiao B.S., Chu B. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. QJM Int. J. Med. 2011;60:201–209. doi: 10.1093/jmicro/dfr019. PubMed DOI

Wang R., Guan S., Sato A., Wang X., Wang Z., Yang R., Hsiao B.S., Chu B. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J. Membr. Sci. 2013;446:376–382. doi: 10.1016/j.memsci.2013.06.020. DOI

Ma H., Hsiao B.S., Chu B. Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. J. Membr. Sci. 2014;452:446–452. doi: 10.1016/j.memsci.2013.10.047. DOI

Contardi M., Heredia-Guerrero J.A., Perotto G., Valentini P., Pompa P.P., Spanò R., Goldoni L., Bertorelli R., Athanassiou A., Bayer I.S. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur. J. Pharm. Sci. 2017;104:133–144. doi: 10.1016/j.ejps.2017.03.044. PubMed DOI

Monteiro N., Martins M., Martins A., Fonseca N.A., Moreira J.N., Reis R.L., Neves N.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 2015;18:196–205. doi: 10.1016/j.actbio.2015.02.018. PubMed DOI

Anbazhagan S., Thangavelu K.P. Application of tetracycline hydrochloride loaded-fungal chitosan and Aloe vera extract based composite sponges for wound dressing. J. Adv. Res. 2018;14:63–71. doi: 10.1016/j.jare.2018.05.005. PubMed DOI PMC

Anisha B., Biswas R., Chennazhi K., Jayakumar R. Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol. 2013;62:310–320. doi: 10.1016/j.ijbiomac.2013.09.011. PubMed DOI

Augustine R., Augustine A., Kalarikkal N., Thomas S. Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog. Biomater. 2016;5:223–235. doi: 10.1007/s40204-016-0060-8. PubMed DOI PMC

Raguvaran R., Manuja A., Manuja B.K., Riyesh T., Singh S., Kesavan M., Dimri U. Sodium alginate and gum acacia hydrogels of zinc oxide nanoparticles reduce hemolytic and oxidative stress inflicted by zinc oxide nanoparticles on mammalian cells. Int. J. Biol. Macromol. 2017;101:967–972. doi: 10.1016/j.ijbiomac.2017.03.180. PubMed DOI

Archana D., Singh B.K., Dutta J., Dutta P. In Vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym. 2013;95:530–539. doi: 10.1016/j.carbpol.2013.03.034. PubMed DOI

Venkatasubbu G.D., Anusuya T. Investigation on Curcumin nanocomposite for wound dressing. Int. J. Biol. Macromol. 2017;98:366–378. doi: 10.1016/j.ijbiomac.2017.02.002. PubMed DOI

Güneş S., Tıhmınlıoğlu F. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int. J. Biol. Macromol. 2017;102:933–943. doi: 10.1016/j.ijbiomac.2017.04.080. PubMed DOI

Rossi S., Marciello M., Sandri G., Ferrari F., Bonferoni M.C., Papetti A., Caramella C., Dacarro C., Grisoli P. Wound Dressings Based on Chitosans and Hyaluronic Acid for the Release of Chlorhexidine Diacetate in Skin Ulcer Therapy. Pharm. Dev. Technol. 2007;12:415–422. doi: 10.1080/10837450701366903. PubMed DOI

Ambrogi V., Pietrella D., Nocchetti M., Casagrande S., Moretti V., De Marco S., Ricci M. Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J. Colloid Interface Sci. 2017;491:265–272. doi: 10.1016/j.jcis.2016.12.058. PubMed DOI

Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008;74:2171–2178. doi: 10.1128/AEM.02001-07. PubMed DOI PMC

Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC

Ruschulte H., Franke M., Gastmeier P., Zenz S., Mahr K.H., Buchholz S., Hertenstein B., Hecker H., Piepenbrock S. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: A randomized controlled trial. Ann. Hematol. 2009;88:267–272. doi: 10.1007/s00277-008-0568-7. PubMed DOI

Groppo F., Ramacciato J., Simões R., Flório F., Sartoratto A. Antimicrobial activity of garlic, tea tree oil, and chlorhexidine against oral microorganisms. Int. Dent. J. 2002;52:433–437. doi: 10.1111/j.1875-595X.2002.tb00638.x. PubMed DOI

Ülkür E., Oncul O., Karagoz H., Yeniz E., Çelik#xF6;z B. Comparison of silver-coated dressing (Acticoat™), chlorhexidine acetate 0.5% (Bactigrass®), and fusidic acid 2% (Fucidin®) for topical antibacterial effect in methicillin-resistant Staphylococci-contaminated, full-skin thickness rat burn wounds. Burns. 2005;31:874–877. PubMed

Barbour M.E., Maddocks S.E., Grady H.J., Roper J.A., Bass M.D., Collins A.M., Dommett R.M., Saunders M. Chlorhexidine hexametaphosphate as a wound care material coating: Antimicrobial efficacy, toxicity and effect on healing. Nanomedicine. 2016;11:2049–2057. doi: 10.2217/nnm-2016-0084. PubMed DOI

Vianna M.E., Gomes B.P., Berber V.B., Zaia A.A., Ferraz C.C.R., De Souza-Filho F.J. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004;97:79–84. doi: 10.1016/S1079-2104(03)00360-3. PubMed DOI

Silvestre C., Duraccio D., Cimmino S. Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 2011;36:1766–1782. doi: 10.1016/j.progpolymsci.2011.02.003. DOI

Guibo Y., Qing Z., Yahong Z., Yin Y., Yumin Y. The Electrospun Polyamide 6 Nanofiber Membranes Used as High Efficiency Filter Materials: Filtration Potential, Thermal Treatment, and Their Continuous Production. J. Appl. Polym. Sci. 2013;128:1061–1069. doi: 10.1002/app.38211. DOI

Matulevicius J., Kliucininkas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014;2014:1–13. doi: 10.1155/2014/859656. DOI

Chong E.J., Phan T.T., Lim I.J., Zhang Y.Z., Bay B.H., Ramakrishna S., Lim C.T. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3:321–330. doi: 10.1016/j.actbio.2007.01.002. PubMed DOI

Shakespeare P.G. The role of skin substitutes in the treatment of burn injuries. Clin. Dermatol. 2005;23:413–418. doi: 10.1016/j.clindermatol.2004.07.015. PubMed DOI

Lencova S., Svarcova V., Stiborova H., Demnerova K., Jencova V., Hozdova K., Zdenkova K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces. 2020;13:2277–2288. doi: 10.1021/acsami.0c19016. PubMed DOI

Ryšánek P., Malý M., Čapková P., Kormunda M., Kolská Z., Gryndler M., Novák O., Hocelíková L., Bystrianský L., Munzarová M. Antibacterial modification of nylon-6 nanofibers: Structure, properties and antibacterial activity. J. Polym. Res. 2017;24:208.

De Vrieze S., Daels N., Lambert K., Decostere B., Hens Z., Van Hulle S., De Clerck K. Filtration performance of electrospun polyamide nanofibres loaded with bactericides. Text. Res. J. 2011;82:37–44. doi: 10.1177/0040517511416273. DOI

Qin N., Tan X., Jiao Y., Liu L., Zhao W., Yang S., Jia A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2015;4:5467. doi: 10.1038/srep05467. PubMed DOI PMC

Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI

Daels N., De Vrieze S., Sampers I., Decostere B., Westbroek P., Dumoulin A., Dejans P., De Clerck K., Van Hulle S. Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination. 2011;275:285–290. doi: 10.1016/j.desal.2011.03.012. DOI

Liu Y.-Q., Feng J.-W., Zhang C.-C., Teng Y., Liu Z., He J.-H. Air permeability of nanofiber membrane with hierarchical structure. Therm. Sci. 2018;22:1637–1643. doi: 10.2298/TSCI1804637L. DOI

Matsumoto H., Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes. 2011;1:249–264. doi: 10.3390/membranes1030249. PubMed DOI PMC

Monson L., Braunwarth M., Extrand C.W. Moisture absorption by various polyamides and their associated dimensional changes. J. Appl. Polym. Sci. 2007;107:355–363. doi: 10.1002/app.27057. DOI

Rogalsky S., Bardeau J.-F., Wu H., Lyoshina L., Bulko O., Tarasyuk O., Makhno S., Cherniavska T., Kyselov Y., Koo J.H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016;51:7716–7730. doi: 10.1007/s10853-016-0054-x. DOI

De Carvalho L., Peres B.U., Maezomo H., Shen Y., Haapasalo M., Manso A., Ko F., Carvalho R. Chlorhexidine-containing electrospun nanofibers: Effect of production mode on chlorhexidine release. Dent. Mater. 2017;33:e17–e18. doi: 10.1016/j.dental.2017.08.033. DOI

Xu X., Zhou M. Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym. 2008;9:685–690. doi: 10.1007/s12221-008-0108-z. DOI

Lala N.L., Ramaseshan R., Bojun L., Sundarrajan S., Barhate R., Ying-Jun L., Ramakrishna S. Fabrication of nanofibers with antimicrobial functionality used as filters: Protection against bacterial contaminants. Biotechnol. Bioeng. 2007;97:1357–1365. doi: 10.1002/bit.21351. PubMed DOI

Da Silva M.E.R., Danelon M., Souza J.A.S., Silva D.F., Pereira J.A., Pedrini D., De Camargo E.R., Delbem A.C.B., Duque C. Incorporation of chlorhexidine and nano-sized sodium trimetaphosphate into a glass-ionomer cement: Effect on mechanical and microbiological properties and inhibition of enamel demineralization. J. Dent. 2019;84:81–88. doi: 10.1016/j.jdent.2019.04.001. PubMed DOI

Sheikh F.A., Barakat N.A.M., Kanjwal M.A., Chaudhari A.A., Jung I.-H., Lee J.H., Kim H.Y. Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol. Res. 2009;17:688–696. doi: 10.1007/BF03218929. DOI

Zhang S., Shim W.S., Kim J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Mater. Des. 2009;30:3659–3666. doi: 10.1016/j.matdes.2009.02.017. DOI

Al-Attabi R., Dumée L.F., Kong L., Schütz J.A., Morsi Y. High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration. Adv. Eng. Mater. 2018;20:1700572. doi: 10.1002/adem.201700572. DOI

Zhao S., Song X., Bu X., Zhu C., Wang G., Liao F., Yang S., Wang M. Polydopamine dots as an ultrasensitive fluorescent probe switch for Cr(VI)in vitro. J. Appl. Polym. Sci. 2017;134:44784. doi: 10.1002/app.44784. DOI

Abrigo M., Kingshott P., McArthur S.L. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces. 2015;7:7644–7652. doi: 10.1021/acsami.5b00453. PubMed DOI

Patanaik A., Jacobs V., Anandjiwala R.D. Performance evaluation of electrospun nanofibrous membrane. J. Membr. Sci. 2010;352:136–142. doi: 10.1016/j.memsci.2010.02.009. DOI

Yun K.M., Hogan C.J., Matsubayashi Y., Kawabe M., Iskandar F., Okuyama K. Nanoparticle filtration by electrospun polymer fibers. Chem. Eng. Sci. 2007;62:4751–4759. doi: 10.1016/j.ces.2007.06.007. DOI

Nicosia A., Gieparda W., Foksowiczflaczyk J., Walentowska J., Wesolek D., Vazquez B., Prodi F., Belosi F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 2015;154:154–160. doi: 10.1016/j.seppur.2015.09.037. DOI

Mortimer C., Burke L., Wright C. Microbial Interactions with Nanostructures and their Importance for the Development of Electrospun Nanofibrous Materials used in Regenerative Medicine and Filtration. J. Microb. Biochem. Technol. 2016;8:195–201. doi: 10.4172/1948-5948.1000285. DOI

Tamayo-Ramos J.A., Rumbo C., Caso F., Rinaldi A., Garroni S., Notargiacomo A., Romero-Santacreu L., Cuesta-López S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS Appl. Mater. Interfaces. 2018;10:32773–32781. doi: 10.1021/acsami.8b07245. PubMed DOI

Kurinčič M., Jeršek B., Klančnik A., Možina S.S., Fink R., Dražić G., Raspor P., Bohinc K. Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential/Vpliv naravnih protimikrobnih snovi na bakterijsko hidrofobnost, adhezijo in zeta potencial. Arch. Ind. Hyg. Toxicol. 2016;67:39–45. doi: 10.1515/aiht-2016-67-2720. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...