Influence of Fiber Diameter of Polycaprolactone Nanofibrous Materials on Biofilm Formation and Retention of Bacterial Cells

. 2024 May 22 ; 16 (20) : 25813-25824. [epub] 20240508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38717992

To develop microbiologically safe nanofibrous materials, it is crucial to understand their interactions with microbial cells. Current research indicates that the morphology of nanofibers, particularly the diameter of the fibers, may play a significant role in biofilm formation and retention. However, it has not yet been determined how the fiber diameter of poly-ε-caprolactone (PCL), one of the most widely used biopolymers, affects these microbial interactions. In this study, two nanofibrous materials electrospun from PCL (PCL45 and PCL80) with different fiber diameter and characteristic distance δ between fibers were compared in terms of their ability to support or inhibit bacterial biofilm formation and retain bacterial cells. Strains of Escherichia coli (ATCC 25922 and ATCC 8739) and Staphylococcus aureus (ATCC 25923 and ATCC 6538) were used as model bacteria. Biofilm formation rate and retention varied significantly between the E. coli and S. aureus strains (p < 0.05) for the tested nanomaterials. In general, PCL showed a lower tendency to be colonized by the tested bacteria compared to the control material (polystyrene). Fiber diameter did not influence the biofilm formation rate of S. aureus strains and E. coli 25922 (p > 0.05), but it did significantly impact the biofilm formation rate of E. coli 8739 and biofilm morphology formed by all of the tested bacterial strains. In PCL45, thick uniform biofilm layers were formed preferably on the surface, while in PCL80 smaller clusters formed preferably inside the structure. Further, fiber diameter significantly influenced the retention of bacterial cells of all the tested strains (p < 0.001). PCL45, with thin fibers (average fiber diameter of 376 nm), retained up to 7 log (CFU mL-1) of staphylococcal cells (100% retention). The overall results indicate PCL45's potential for further research and highlight the nanofibers' morphology influence on bacterial interactions and differences in bacterial strains' behavior in the presence of nanomaterials.

Zobrazit více v PubMed

De Cesare F.; Di Mattia E.; Zussman E.; Macagnano A. A study on the dependence of bacteria adhesion on the polymer nanofibre diameter. Environmental Science: Nano 2019, 6 (3), 778–797. 10.1039/C8EN01237G. DOI

Tamayo-Ramos J. A.; Rumbo C.; Caso F.; Rinaldi A.; Garroni S.; Notargiacomo A.; Romero-Santacreu L.; Cuesta-López S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS Appl. Mater. Interfaces 2018, 10 (38), 32773–32781. 10.1021/acsami.8b07245. PubMed DOI

Maliszewska I.; Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers 2022, 14 (9), 1661.10.3390/polym14091661. PubMed DOI PMC

Leung C. M.; Dhand C.; Dwivedi N.; Xiao A.; Ong S. T.; Chalasani M. L. S.; Sriram H.; Balakrishnan Y.; Dolatshahi-Pirouz A.; Orive G.; Beuerman R. W.; Ramakrishna S.; Verma N. K.; Lakshminarayanan R. Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatin. ACS Appl. Bio Mater. 2019, 2 (2), 807–823. 10.1021/acsabm.8b00666. PubMed DOI

Abrigo M.; Kingshott P.; McArthur S. L. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces 2015, 7 (14), 7644–7652. 10.1021/acsami.5b00453. PubMed DOI

Kargar M.; Wang J.; Nain A. S.; Behkam B. Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter 2012, 8 (40), 10254–10259. 10.1039/c2sm26368h. DOI

Lencova S.; Svarcova V.; Stiborova H.; Demnerova K.; Jencova V.; Hozdova K.; Zdenkova K. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces 2021, 13 (2), 2277–2288. 10.1021/acsami.0c19016. PubMed DOI

Lencova S.; Zdenkova K.; Jencova V.; Demnerova K.; Zemanova K.; Kolackova R.; Hozdova K.; Stiborova H. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. Nanomaterials 2021, 11 (2), 480.10.3390/nano11020480. PubMed DOI PMC

Lurie S. A.; Solyaev Y. O.; Lizunova D. V.; Rabinskiy L. N.; Bouznik V. M.; Menshykov O. Influence of mean distance between fibers on the effective gas thermal conductivity in highly porous fibrous materials. Int. J. Heat Mass Transfer 2017, 109, 511–519. 10.1016/j.ijheatmasstransfer.2017.02.015. DOI

Hauzerova S. H., Kristyna; Volakova V.; Stepankova J.; Jencova V.. Protein Adsorption on Biodegradable Mikro/Nanofibres Materials for Tissue Engineering. In 15th International Conference on Nanomaterials - Research & Application, Brno, Czech Republic, 2023; 2023.10.37904/nanocon.2023.4795. DOI

Ma W.; Lu T.; Cao W.; Xiong R.; Huang C. Bioinspired Nanofibrous Aerogel with Vertically Aligned Channels for Efficient Water Purification and Salt-Rejecting Solar Desalination. Adv. Funct. Mater. 2023, 33 (23), 221415710.1002/adfm.202214157. DOI

He G.; Gu Y.; He S.; Schröder U.; Chen S.; Hou H. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells. Bioresour. Technol. 2011, 102 (22), 10763–10766. 10.1016/j.biortech.2011.09.006. PubMed DOI

Liu X.; Lin T.; Fang J.; Yao G.; Zhao H.; Dodson M.; Wang X. In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J. Biomed. Mater. Res., Part A 2010, 94A (2), 499–508. 10.1002/jbm.a.32718. PubMed DOI

Shahid M. A.; Hasan M. M.; Alam M. R.; Mohebullah M.; Chowdhury M. A. Antibacterial multicomponent electrospun nanofibrous mat through the synergistic effect of biopolymers. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000221136061.10.1177/22808000221136061. PubMed DOI

Shi Q.; Hou J.; Xu X.; Gao J.; Li C.; Jin J.; Wong S.-C.; Yin J. Capture and Release Erythrocyte from the Blood with Thermoresponsive and Core-Sheath PCL/PNIPAAm Nanofibers. Advanced Materials Interfaces 2016, 3 (5), 150065210.1002/admi.201500652. DOI

Pompa-Monroy D. A.; Iglesias A. L.; Dastager S. G.; Thorat M. N.; Olivas-Sarabia A.; Valdez-Castro R.; Hurtado-Ayala L. A.; Cornejo-Bravo J. M.; Pérez-González G. L.; Villarreal-Gómez L. J. Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation. Membranes (Basel) 2022, 12 (3), 327.10.3390/membranes12030327. PubMed DOI PMC

Flores-Rojas G. G.; Gómez-Lazaro B.; López-Saucedo F.; Vera-Graziano R.; Bucio E.; Mendizábal E. Electrospun Scaffolds for Tissue Engineering: A Review. Macromolecules 2023, 3 (3), 524–553. 10.3390/macromol3030031. DOI

Yan B.; Zhang Y.; Li Z.; Zhou P.; Mao Y. Electrospun nanofibrous membrane for biomedical application. SN Applied Sciences 2022, 4 (6), 172.10.1007/s42452-022-05056-2. PubMed DOI PMC

Fernández-Gómez P.; Trigal E.; Alegría Á.; Santos J. A.; López M.; Prieto M.; Alvarez-Ordóñez A. Biofilm formation ability and tolerance to food-associated stresses among ESBL-producing Escherichia coli strains from foods of animal origin and human patients. LWT 2022, 168, 113961.10.1016/j.lwt.2022.113961. DOI

Matsumoto H.; Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes 2011, 1 (3), 249–264. 10.3390/membranes1030249. PubMed DOI PMC

Matulevicius J.; Kliucininkas L.; Martuzevicius D.; Krugly E.; Tichonovas M.; Baltrusaitis J. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014, 2014, 859656.10.1155/2014/859656. DOI

Ma H.; Hsiao B. S.; Chu B. Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. J. Membr. Sci. 2014, 452, 446–452. 10.1016/j.memsci.2013.10.047. DOI

Taheran M.; Kumar P.; Naghdi M.; Brar S. K.; Knystautas E. J.; Verma M.; Surampalli R. Y. Development of an advanced multifunctional portable water purifier. Nanotechnology for Environmental Engineering 2019, 4 (1), 7.10.1007/s41204-019-0054-6. DOI

Lemma S. M.; Esposito A.; Mason M.; Brusetti L.; Cesco S.; Scampicchio M. Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. J. Food Eng. 2015, 157, 1–6. 10.1016/j.jfoodeng.2015.02.005. DOI

Babu S. S.; Mathew S.; Kalarikkal N.; Thomas S.; Radhakrishnan E. K. Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. 3 Biotech 2016, 6 (2), 249.10.1007/s13205-016-0559-7. PubMed DOI PMC

Qu Q.; Zhang J.; Chen X.; Ravanbakhsh H.; Tang G.; Xiong R.; Manshian B. B.; Soenen S. J.; Sauvage F.; Braeckmans K.; et al. Triggered Release from Cellulose Microparticles Inspired by Wood Degradation by Fungi. ACS Sustainable Chem. Eng. 2021, 9 (1), 387–397. 10.1021/acssuschemeng.0c07514. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...