Potential of Polyamide Nanofibers With Natamycin, Rosemary Extract, and Green Tea Extract in Active Food Packaging Development: Interactions With Food Pathogens and Assessment of Microbial Risks Elimination
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35369475
PubMed Central
PMC8965076
DOI
10.3389/fmicb.2022.857423
Knihovny.cz E-zdroje
- Klíčová slova
- food microbiology, food packaging, green tea, nanofibers, natamycin, polyamide, rosemary,
- Publikační typ
- časopisecké články MeSH
Increasing microbial safety and prolonging the shelf life of products is one of the major challenges in the food industry. Active food packaging made from nanofibrous materials enhanced with antimicrobial substances is considered a promising way. In this study, electrospun polyamide (PA) nanofibrous materials functionalized with 2.0 wt% natamycin (NAT), rosemary extract (RE), and green tea extract (GTE), respectively, were prepared as active packaging and tested for the food pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. The PAs exhibited: (i) complete retention of bacterial cells reaching 6.0-6.4 log10removal, (ii) antimicrobial activity with 1.6-3.0 log10suppression, and (iii) antibiofilm activity with 1.7-3.0 log10suppression. The PAs prolonged the shelf life of chicken breast; up to 1.9 log10(CFU/g) suppression of total viable colonies and 2.1 log10(CFU/g) suppression of L. monocytogenes were observed after 7 days of storage at 7°C. A beneficial effect on pH and sensory quality was verified. The results confirm microbiological safety and benefits of PA/NAT, PA/RE, and PA/GTE and their potential in developing functional and ecological packaging.
Zobrazit více v PubMed
Abrigo M., Kingshott P., McArthur S. L. (2015). Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases 10:04A301. doi: 10.1116/1.4927218, PMID: PubMed DOI
Abuzade R., Zadhoush A., Gharehaghaji A. (2012). Air permeability of electrospun polyacrylonitrile nanoweb. J. Appl. Polym. Sci. 126, 232–243. doi: 10.1002/app.36774 DOI
Alibayov B., Karamonova L., Hollerova R., Zdenkova K., Demnerova K. (2015). Differences in transcription and expression of staphylococcal enterotoxin C in processed meat products. LWT Food Sci. Technol. 64, 578–585. doi: 10.1016/j.lwt.2015.06.026 DOI
Appendini P., Hotchkiss J. H. (2002). Review of antimicrobial food packaging. Innovative Food Sci. Emerg. Technol. 3, 113–126. doi: 10.1016/S1466-8564(02)00012-7 DOI
Asgher M., Qamar S. A., Bilal M., Iqbal H. M. N. (2020). Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 137:109625. doi: 10.1016/j.foodres.2020.109625, PMID: PubMed DOI
Babu S. S., Mathew S., Kalarikkal N., Thomas S., Radhakrishnan E. K. (2016). Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. Biotech 6:249. doi: 10.1007/s13205-016-0559-7, PMID: PubMed DOI PMC
Bekhit A. E.-D. A., Holman B. W. B., Giteru S. G., Hopkins D. L. (2021). Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: a review. Trends Food Sci. Technol. 109, 280–302. doi: 10.1016/j.tifs.2021.01.006 DOI
Blanco A. R., Sudano-Roccaro A., Spoto G. C., Nostro A., Rusciano D. (2005). Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob. Agents Chemother. 49, 4339–4343. doi: 10.1128/AAC.49.10.4339-4343.2005, PMID: PubMed DOI PMC
Borzi F., Torrieri E., Wrona M., Nerín C. (2019). Polyamide modified with green tea extract for fresh minced meat active packaging applications. Food Chem. 300:125242. doi: 10.1016/j.foodchem.2019.125242, PMID: PubMed DOI
Campo J., Amiot M. J., Nguyen-The C. (2000). Antimicrobial effect of rosemary extracts. J. Food Prot. 63, 1359–1368. doi: 10.4315/0362-028X-63.10.1359 PubMed DOI
Carbone M., Donia D. T., Sabbatella G., Antiochia R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci. 28, 273–279. doi: 10.1016/j.jksus.2016.05.004 DOI
Chinnam N., Dadi P. K., Sabri S. A., Ahmad M., Kabir M. A., Ahmad Z. (2010). Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. Int. J. Biol. Macromol. 46, 478–486. doi: 10.1016/j.ijbiomac.2010.03.009, PMID: PubMed DOI PMC
Cho Y. S., Schiller N. L., Kahng H. Y., Oh K. H. (2007). Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols. Curr. Microbiol. 55, 501–506. doi: 10.1007/s00284-007-9021-8, PMID: PubMed DOI
Duan M., Yu S., Sun J., Jiang H., Zhao J., Tong C., et al. . (2021). Development and characterization of electrospun nanofibers based on pullulan/chitin nanofibers containing curcumin and anthocyanins for active-intelligent food packaging. Int. J. Biol. Macromol. 187, 332–340. doi: 10.1016/j.ijbiomac.2021.07.140, PMID: PubMed DOI
Duncan T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24. doi: 10.1016/j.jcis.2011.07.017, PMID: PubMed DOI PMC
Duran M., Aday M. S., Zorba N. N. D., Temizkan R., Büyükcan M. B., Caner C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food Bioprod. Process. 98, 354–363. doi: 10.1016/j.fbp.2016.01.007 DOI
EFSA (2009). Scientific opinion on the use of natamycin (E235) as a food additive. EFSA J. 7:1412. doi: 10.2903/j.efsa.2009.1412 DOI
EFSA Panel on Food Additives and Nutrient Sources added to Food. Younes M., Aggett P., Aguilar F., Crebelli R., Dusemund B., et al. . (2018). Refined exposure assessment of extracts of rosemary (E 392) from its use as food additive. EFSA J. 16:e05373. doi: 10.2903/j.efsa.2018.5373, PMID: PubMed DOI PMC
Fajardo P., Martins J. T., Fuciños C., Pastrana L., Teixeira J. A., Vicente A. A. (2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. J. Food Eng. 101, 349–356. doi: 10.1016/j.jfoodeng.2010.06.029 DOI
FDA (1980a). 21 CFR 186.1316: Indirect Food Substances Affirmed as Generally Recognized as Safe. Available at: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-186/subpart-B/section-186.1316 (Accessed February 14, 2022).
FDA (1980b). 21CFR177.1330: Indirect Food Additives: Polymers. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=177.1330 (Accessed February 14, 2022).
Galié S., García-Gutiérrez C., Miguélez E. M., Villar C. J., Lombó F. (2018). Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9:898. doi: 10.3389/fmicb.2018.00898, PMID: PubMed DOI PMC
Gilles B., Tom C. (2015). Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 21, 5–11. doi: 10.2174/1381612820666140905114627 PubMed DOI
Göksen G., Fabra M. J., Pérez-Cataluña A., Ekiz H. I., Sanchez G., López-Rubio A. (2021). Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packag. Shelf Life 27:100613. doi: 10.1016/j.fpsl.2020.100613 DOI
Gradišar H., Pristovšek P., Plaper A., Jerala R. (2007). Green tea Catechins inhibit bacterial DNA Gyrase by interaction with its ATP binding site. J. Med. Chem. 50, 264–271. doi: 10.1021/jm060817o, PMID: PubMed DOI
Istiqola A., Syafiuddin A. (2020). A review of silver nanoparticles in food packaging technologies: regulation, methods, properties, migration, and future challenges. J. Chin. Chem. Soc. 67, 1942–1956. doi: 10.1002/jccs.202000179 DOI
Jirsak O., Sanetrnik F., Lukas D., Kotek V., Martinova L., Chaloupek J. (2009). Method of Nanofibres Production From a Polymer Solution Using Electrostatic Spinning and a Device for Carrying Out the Method. US patent No. US 7,585,437 B2.
Kramer B., Thielmann J., Hickisch A., Muranyi P., Wunderlich J., Hauser C. (2015). Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 118, 648–657. doi: 10.1111/jam.12717, PMID: PubMed DOI
Labuza T., Breene W. (1989). Application of ‘active packaging’ technologies for the improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. Bibl. Nutr. Dieta 43, 252–259. doi: 10.1159/000416709, PMID: PubMed DOI
Lantano C., Alfieri I., Cavazza A., Corradini C., Lorenzi A., Zucchetto N., et al. . (2014). Natamycin based sol–gel antimicrobial coatings on polylactic acid films for food packaging. Food Chem. 165, 342–347. doi: 10.1016/j.foodchem.2014.05.066, PMID: PubMed DOI
Lencova S., Svarcova V., Stiborova H., Demnerova K., Jencova V., Hozdova K., et al. . (2021a). Bacterial biofilms on polyamide nanofibers: factors influencing biofilm formation and evaluation. ACS Appl. Mater. Interfaces 13, 2277–2288. doi: 10.1021/acsami.0c19016, PMID: PubMed DOI
Lencova S., Zdenkova K., Demnerova K., Stiborova H. (2022). Short communication: antibacterial and antibiofilm effect of natural substances and their mixtures over Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. LWT 154:112777. doi: 10.1016/j.lwt.2021.112777 DOI
Lencova S., Zdenkova K., Jencova V., Demnerova K., Zemanova K., Kolackova R., et al. . (2021b). Benefits of polyamide nanofibrous materials: antibacterial activity and retention ability for Staphylococcus aureus. Nano 11:480. doi: 10.3390/nano11020480, PMID: PubMed DOI PMC
Li M., Liu J.-T., Pang X.-M., Han C.-J., Mao J.-J. (2012). Epigallocatechin-3-gallate inhibits angiotensin II and interleukin-6-induced C-reactive protein production in macrophages. Pharmacol. Rep. 64, 912–918. doi: 10.1016/S1734-1140(12)70886-1, PMID: PubMed DOI
Li B.-H.-H., Zhang R., Du Y.-T.-T., Sun Y.-H.-H., Tian W.-X.-X. (2006). Inactivation mechanism of the β-ketoacyl-[acyl carrier protein] reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate. Biochem. Cell Biol. 84, 755–762. doi: 10.1139/o06-047, PMID: PubMed DOI
Lin L., Xue L., Duraiarasan S., Haiying C. (2018). Preparation of ε-polylysine/chitosan nanofibers for food packaging against salmonella on chicken. Food Packag. Shelf Life 17, 134–141. doi: 10.1016/j.fpsl.2018.06.013 DOI
Lopes N. A., Brandelli A. (2018). Nanostructures for delivery of natural antimicrobials in food. Crit. Rev. Food Sci. Nutr. 58, 2202–2212. doi: 10.1080/10408398.2017.1308915 PubMed DOI
López de Dicastillo C., Nerín C., Alfaro P., Catalá R., Gavara R., Hernández-Muñoz P. (2011). Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. J. Agric. Food Chem. 59, 7832–7840. doi: 10.1021/jf201246g, PMID: PubMed DOI
Mai-Prochnow A., Clauson M., Hong J., Murphy A. B. (2016). Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6:38610. doi: 10.1038/srep38610, PMID: PubMed DOI PMC
Matulevicius J., Kliucininkas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J. (2014). Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014, 1–13. doi: 10.1155/2014/859656 DOI
Munzarová M., Demnerova K., Lencova S., Stiborova H., Zdenkova K. (2020). Zvlákňovací roztok pro výrobu nanovlákenné vrstvy a potravinářské obaly tuto nanovlákennou vrstvu obsahující (Spinning Solution for Production of Nanofiber Layers and Food Packaging Containing This Nanofiber Layer). Utility model n. 33 798.
Naskar A., Khan H., Sarkar R., Kumar S., Halder D., Jana S. (2018). Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater. Sci. Eng. C 91, 743–753. doi: 10.1016/j.msec.2018.06.009, PMID: PubMed DOI
Nazari M., Majdi H., Milani M., Abbaspour-Ravasjani S., Hamishehkar H., Lim L.-T. (2019). Cinnamon nanophytosomes embedded electrospun nanofiber: its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag. Shelf Life 21:100349. doi: 10.1016/j.fpsl.2019.100349 DOI
Nguyen Van Long N., Joly C., Dantigny P. (2016). Active packaging with antifungal activities. Int. J. Food Microbiol. 220, 73–90. doi: 10.1016/j.ijfoodmicro.2016.01.001 PubMed DOI
Nieto G., Ros G., Castillo J. (2018). Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): a review. Medicine 5:98. doi: 10.3390/medicines5030098, PMID: PubMed DOI PMC
Nostro A., Scaffaro R., D’Arrigo M., Botta L., Filocamo A., Marino A., et al. . (2012). Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl. Microbiol. Biotechnol. 96, 1029–1038. doi: 10.1007/s00253-012-4091-3, PMID: PubMed DOI
Okamoto M., Leung K.-P., Ansai T., Sugimoto A., Maeda N. (2003). Inhibitory effects of green tea catechins on protein tyrosine phosphatase in Prevotella intermedia. Oral Microbiol. Immunol. 18, 192–195. doi: 10.1034/j.1399-302X.2003.00056.x, PMID: PubMed DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. . (2016). Vegan: Community Ecology Package. R package version 2.5-6. 2019. Available at: https://cran.r-project.org/web/packages/vegan/index.html (Accessed May 04, 2021).
Pan J., Ai F., Shao P., Chen H., Gao H. (2019). Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem. 300:125249. doi: 10.1016/j.foodchem.2019.125249, PMID: PubMed DOI
Partheniadis I., Nikolakakis I., Laidmäe I., Heinämäki J. (2020). A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. PRO 8:673. doi: 10.3390/pr8060673 PubMed DOI PMC
Piñeros-Hernandez D., Medina-Jaramillo C., López-Córdoba A., Goyanes S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 63, 488–495. doi: 10.1016/j.foodhyd.2016.09.034 DOI
R Core Team (2017). R: A Language and Environment for Statistical Computing. Available at: https://www.R-project.org/ (Accessed January 11, 2021).
Reygaert W. C. (2014). The antimicrobial possibilities of green tea. Front. Microbiol. 5:434. doi: 10.3389/fmicb.2014.00434, PMID: PubMed DOI PMC
Rodney M. D. (2002). Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890. doi: 10.3201/eid0809.020063, PMID: PubMed DOI PMC
Rothrock M. J., Davis M. L., Locatelli A., Bodie A., McIntosh T. G., Donaldson J. R., et al. . (2017). Listeria occurrence in poultry flocks: detection and potential implications. Front. Vet. Sci. 4:125. doi: 10.3389/fvets.2017.00125, PMID: PubMed DOI PMC
Sadri M., Arab-Sorkhi S., Vatani H., Bagheri-Pebdeni A. (2015). New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers Polym. 16, 1742–1750. doi: 10.1007/s12221-015-5297-7 DOI
Sharma A., Gupta S., Sarethy I. P., Dang S., Gabrani R. (2012). Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 135, 672–675. doi: 10.1016/j.foodchem.2012.04.143, PMID: PubMed DOI
Shin W. J., Kim Y. K., Lee K. H., Seong B. L. (2012). Evaluation of the antiviral activity of a green tea solution as a hand-wash disinfectant. Biosci. Biotechnol. Biochem. 76, 581–584. doi: 10.1271/bbb.110764 PubMed DOI
Song R., Shurson G. C. (2013). Evaluation of lipid peroxidation level in corn dried distillers grains with solubles1. J. Anim. Sci. 91, 4383–4388. doi: 10.2527/jas.2013-6319, PMID: PubMed DOI
Topuz F., Uyar T. (2020). Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res. Int. 130:108927. doi: 10.1016/j.foodres.2019.108927, PMID: PubMed DOI
Tyuftin A. A., Kerry J. P. (2020). Review of surface treatment methods for polyamide films for potential application as smart packaging materials: surface structure, antimicrobial and spectral properties. Food Packag. Shelf Life 24:100475. doi: 10.1016/j.fpsl.2020.100475 DOI
Veras F. F., Ritter A. C., Roggia I., Pranke P., Pereira C. N., Brandelli A. (2020). Natamycin-loaded electrospun poly(ε-caprolactone) nanofibers as an innovative platform for antifungal applications. SN Appl. Sci. 2:1105. doi: 10.1007/s42452-020-2912-z DOI
Vodnar D. C. (2012). Inhibition of listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films. Chem. Cent. J. 6:74. doi: 10.1186/1752-153x-6-74, PMID: PubMed DOI PMC
Winnacker M. (2017). Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomater. Sci. 5, 1230–1235. doi: 10.1039/C7BM00160F, PMID: PubMed DOI
Wrona M., Nerín C., Alfonso M. J., Caballero M. Á. (2017). Antioxidant packaging with encapsulated green tea for fresh minced meat. Innovative Food Sci. Emerg. Technol. 41, 307–313. doi: 10.1016/j.ifset.2017.04.001 DOI
Yamakuchi M., Bao C., Ferlito M., Lowenstein C. J. (2008). Epigallocatechin gallate inhibits endothelial exocytosis. Biol. Chem. 389, 935–941. doi: 10.1515/BC.2008.095, PMID: PubMed DOI PMC
Yang S.-C., Lin C.-H., Aljuffali I. A., Fang J.-Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 199, 811–825. doi: 10.1007/s00203-017-1393-y, PMID: PubMed DOI
Yuan L., Hansen M. F., Røder H. L., Wang N., Burmølle M., He G. (2020). Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit. Rev. Food Sci. Nutr. 60, 2277–2293. doi: 10.1080/10408398.2019.1632790, PMID: PubMed DOI
Zhu J., Huang X., Zhang F., Feng L., Li J. (2015). Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols. J. Microbiol. 53, 829–836. doi: 10.1007/s12275-015-5123-3, PMID: PubMed DOI