Nitrogen-Containing Flavonoids-Preparation and Biological Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39157108
PubMed Central
PMC11325505
DOI
10.1021/acsomega.4c04627
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, we report the application of Buchwald-Hartwig amination for the preparation of new derivatives of quercetin and luteolin. Our investigation delves into the impact of aniline moiety on antioxidant, and anti-inflammatory activity, cytotoxicity, and the ability of flavonoids to modulate drug-resistance mechanisms in bacteria. The anti-inflammatory activity disappeared after the introduction of aniline into the flavonoids and the cytotoxicity remained low. Although the ability of quercetin and luteolin to modulate bacterial resistance to antibiotics has already been published, this is the first report on the molecular mechanism of this process. Both flavonoids attenuate erythromycin resistance by suppressing the ribosomal methyltransferase encoded by the ermA gene in Staphylococcus aureus. Notably, 4-(trifluoromethyl)anilino quercetin emerged as a potent ErmA inhibitor, likely by interacting with the RNA-binding pocket of ErmA. Additionally, both 4-fluoroanilino derivatives effectively impended the staphylococcal efflux system. All the prepared derivatives exhibited superior activity in modulating gentamicin resistance in S. aureus compared to the parent compounds. Overall, the incorporation of substituted anilines into the flavonoid core significantly enhanced its ability to combat multidrug resistance in bacteria.
Zobrazit více v PubMed
Bariwal J.; Van der Eycken E. C–N bond forming cross-coupling reactions: An overview. Chem. Soc. Rev. 2013, 42, 9283–9303. 10.1039/c3cs60228a. PubMed DOI
Cho S. H.; Kim J. Y.; Kwak J.; Chang S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 2011, 40, 5068–5083. 10.1039/c1cs15082k. PubMed DOI
Ullmann F. Ueber eine neue Bildungsweise von Diphenylaminderivaten. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384. 10.1002/cber.190303602174. DOI
Goldberg I. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. Ber. Dtsch. Chem. Ges. 1906, 39, 1691–1692. 10.1002/cber.19060390298. DOI
Ma D.; Xia C. CuI-catalyzed coupling reaction of β-amino acids or esters with aryl halides at temperature lower than that employed in the normal Ullmann reaction. Facile synthesis of SB-214857. Org. Lett. 2001, 3, 2583–2586. 10.1021/ol016258r. PubMed DOI
Ma D.; Cai Q. Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc. Chem. Res. 2008, 41, 1450–1460. 10.1021/ar8000298. PubMed DOI
Guram A. S.; Rennels R. A.; Buchwald S. L. A simple catalytic method for the conversion of aryl bromides to arylamines. Angew. Chem., Int. Ed. 1995, 34, 1348–1350. 10.1002/anie.199513481. DOI
Louie J.; Hartwig J. F. Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Lett. 1995, 36, 3609–3612. 10.1016/0040-4039(95)00605-C. DOI
Dorel R.; Grugel C. P.; Haydl A. M. The Buchwald-Hartwig amination after 25 years. Angew. Chem., Int. Ed. 2019, 58, 17118–17129. 10.1002/anie.201904795. PubMed DOI
Chambers C. S.; Viktorová J.; Řehořová K.; Biedermann D.; Turková L.; Macek T.; Křen V.; Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2020, 68, 1763–1779. 10.1021/acs.jafc.9b00694. PubMed DOI
Zima V.; Radilová K.; Kožíšek M.; Albiñana C. B.; Karlukova E.; Brynda J.; Fanfrlík J.; Flieger M.; Hodek J.; Weber J.; et al. Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. Eur. J. Med. Chem. 2020, 208, 112754.10.1016/j.ejmech.2020.112754. PubMed DOI
Naik R. G.; Kattige S. L.; Bhat S. V.; Alreja B.; de Souza N. J.; Rupp R. H. An antiinflammatory cum immunomodulatory piperidinylbenzopyranone from Dysoxylum binectariferum: Isolation, structure and total synthesis. Tetrahedron 1988, 44, 2081–2086. 10.1016/S0040-4020(01)90352-7. DOI
Kumara P. M.; Soujanya K. N.; Ravikanth G.; Vasudeva R.; Ganeshaiah K. N.; Shaanker R. U. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb).Wight & Arn. Phytomedicine 2014, 21, 541–546. 10.1016/j.phymed.2013.09.019. PubMed DOI
Nguyen T. L. A.; Bhattacharya D. Antimicrobial activity of quercetin: An approach to its mechanistic principle. Molecules 2022, 27, 2494.10.3390/molecules27082494. PubMed DOI PMC
Holasová K.; Křížkovská B.; Hoang L.; Dobiasová S.; Lipov J.; Macek T.; Křen V.; Valentová K.; Ruml T.; Viktorová J. Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomed. Pharmacother. 2022, 149, 112806.10.1016/j.biopha.2022.112806. PubMed DOI
da Silva C. R.; de Andrade Neto J. B.; de Sousa Campos R.; Figueiredo N. S.; Sampaio L. S.; Magalhães H. I. F.; Cavalcanti B. C.; Gaspar D. M.; de Andrade G. M.; Lima I. S. P.; de Barros Viana G. S. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother. 2014, 58 (3), 1468–1478. 10.1128/AAC.00651-13. PubMed DOI PMC
Pal A.; Tripathi A. Demonstration of bactericidal and synergistic activity of quercetin with Meropenem among pathogenic carbapenem resistant Escherichia coli and Klebsiella pneumoniae. Microb. Pathog. 2020, 143, 104120.10.1016/j.micpath.2020.104120. PubMed DOI
Siriwong S.; Teethaisong Y.; Thumanu K.; Dunkhunthod B.; Eumkeb G. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol. Toxicol. 2016, 17, 39.10.1186/s40360-016-0083-8. PubMed DOI PMC
Vipin C.; Saptami K.; Fida F.; Mujeeburahiman M.; Rao S. S.; Athmika Arun A. B.; Arun A. B.; Rekha P. D. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS One 2020, 15, e024130410.1371/journal.pone.0241304. PubMed DOI PMC
Zhao X.; Cui X.; Yang Y.; Zhu L.; Li L.; Kong X. Synergistic effect of quercetin on antibacterial activity of florfenicol against Aeromonas hydrophila in vitro and in vivo. Antibiotics 2022, 11, 929.10.3390/antibiotics11070929. PubMed DOI PMC
Odabaş Köse E.; Koyuncu Özyurt Ö.; Bilmen S.; Er H.; Kilit C.; Aydemir E. Quercetin: Synergistic interaction with antibiotics against colistin-resistant Acinetobacter baumannii. Antibiotics 2023, 12, 739.10.3390/antibiotics12040739. PubMed DOI PMC
Kim M. K.; Lee T. G.; Jung M.; Park K. H.; Chong Y. In vitro synergism and anti-biofilm activity of quercetin-pivaloxymethyl conjugate against Staphylococcus aureus and Enterococcus species. Chem. Pharm. Bull. 2018, 66, 1019–1022. 10.1248/cpb.c18-00380. PubMed DOI
Siriwong S.; Thumanu K.; Hengpratom T.; Eumkeb G. Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evid. Based Complementary Altern. Med. 2015, 2015, 759459.10.1155/2015/759459. PubMed DOI PMC
Amin M. U.; Khurram M.; Khattak B.; Khan J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement Altern. Med. 2015, 15, 59.10.1186/s12906-015-0580-0. PubMed DOI PMC
Jing S.; Kong X.; Wang L.; Wang H.; Feng J.; Wei L.; Meng Y.; Liu C.; Chang X.; Qu Y.; et al. Quercetin reduces the virulence of S. aureus by targeting ClpP to protect mice from MRSA-induced lethal pneumonia. Microbiol. Spectr. 2022, 10, e023402110.1128/spectrum.02340-21. PubMed DOI PMC
Hurtová M.; Káňová K.; Dobiasová S.; Holasová K.; Čáková D.; Hoang L.; Biedermann D.; Kuzma M.; Cvačka J.; Křen V.; et al. Selectively halogenated flavonolignans - Preparation and antibacterial activity. Int. J. Mol. Sci. 2022, 23, 15121.10.3390/ijms232315121. PubMed DOI PMC
Hurtova M.; Biedermann D.; Osifova Z.; Cvacka J.; Valentova K.; Kren V. Preparation of Synthetic and Natural Derivatives of Flavonoids Using Suzuki–Miyaura Cross-Coupling Reaction. Molecules 2022, 27, 967.10.3390/molecules27030967. PubMed DOI PMC
Fitzmaurice R. J.; Etheridge Z. C.; Jumel E.; Woolfson D. N.; Caddick S. Microwave-enhanced palladium-catalyzed coupling reactions: A diversity-oriented synthesis approach to functionalized flavones. Chem. Commun. 2007, 38, 4814–4816. 10.1039/B610734F. PubMed DOI
Pajtás D.; Kónya K.; Kiss-Szikszai A.; Džubák P.; Pethő Z.; Varga Z.; Panyi G.; Patonay T. Optimization of the synthesis of flavone–amino acid and flavone–dipeptide hybrids via Buchwald–Hartwig reaction. J. Org. Chem. 2017, 82, 4578–4587. 10.1021/acs.joc.7b00124. PubMed DOI
Vu L. T. N.; Anh L. T.; Cuc N. T.; Nhiem N. X.; Tai B. H.; Van Kiem P.; Litaudon M.; Thach T. D.; Van Minh C.; Mai H. D. T.; et al. Prenylated flavonoids and other constituents from Macaranga indica. Nat. Prod. Res. 2021, 35, 2123–2130. 10.1080/14786419.2019.1662007. PubMed DOI
Wolfe K. L.; Liu R. H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. 10.1021/jf0715166. PubMed DOI
Cao G.; Sofic E.; Prior R. L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. 10.1016/S0891-5849(96)00351-6. PubMed DOI
Patel R. V.; Mistry B. M.; Shinde S. K.; Syed R.; Singh V.; Shin H. S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889–904. 10.1016/j.ejmech.2018.06.053. PubMed DOI
Yu Z.; Zhu Y.; Fu J.; Qiu J.; Yin J. Enhanced NADH metabolism involves colistin-induced killing of Bacillus subtilis and Paenibacillus polymyxa. Molecules 2019, 24, 387.10.3390/molecules24030387. PubMed DOI PMC
Goh B. C.; Xiang X.; Lescar J.; Dedon P. C. Crystal structure and functional analysis of mycobacterial erythromycin resistance methyltransferase Erm38 reveals its RNA-binding site. J. Biol. Chem. 2022, 298, 101571.10.1016/j.jbc.2022.101571. PubMed DOI PMC
Schluckebier G.; Zhong P.; Stewart K. D.; Kavanaugh T. J.; Abad-Zapatero C. The 2.2 Å structure of the rRNA methyltransferase ErmC′and its complexes with cofactor and cofactor analogs: Implications for the reaction mechanism. J. Mol. Biol. 1999, 289, 277–291. 10.1006/jmbi.1999.2788. PubMed DOI
Duran N.; Ozer B.; Duran G. G.; Onlen Y.; Demir C. Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J. Med. Res. 2012, 135, 389–396. PubMed PMC
Szymanek-Majchrzak K.; Mlynarczyk A.; Kawecki D.; Pacholczyk M.; Durlik M.; Deborska-Materkowska D.; Paczek L.; Mlynarczyk G. Resistance to aminoglycosides of methicillin-resistant strains of Staphylococcus aureus, originating in the surgical and transplantation wards of the Warsaw Clinical Center—A retrospective analysis. Transplant. Proc. 2018, 50, 2170–2175. 10.1016/j.transproceed.2018.02.158. PubMed DOI
Viktorová J.; Dobiasová S.; Řehořová K.; Biedermann D.; Káňová K.; Šeborová K.; Václavíková R.; Valentová K.; Ruml T.; Křen V.; et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants 2019, 8, 303.10.3390/antiox8080303. PubMed DOI PMC
Tran V. N.; Strnad O.; Šuman J.; Veverková T.; Sukupová A.; Cejnar P.; Hynek R.; Kronusová O.; Šach J.; Kaštánek P.; et al. Cannabidiol nanoemulsion for eye treatment – Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int. J. Pharm. 2023, 643, 123202.10.1016/j.ijpharm.2023.123202. PubMed DOI
Tran V. N.; Viktorová J.; Augustýnková K.; Jelenová N.; Dobiasová S.; Řehořová K.; Fenclová M.; Stránská-Zachariášová M.; Vítek L.; Hajšlová J.; et al. In silico and in vitro studies of mycotoxins and their cocktails; Their toxicity and its mitigation by silibinin pre-treatment. Toxins 2020, 12, 148.10.3390/toxins12030148. PubMed DOI PMC
Křížkovská B.; Hoang L.; Brdová D.; Klementová K.; Szemerédi N.; Loučková A.; Kronusová O.; Spengler G.; Kaštánek P.; Hajšlová J.; et al. Modulation of the bacterial virulence and resistance by well-known European medicinal herbs. J. Ethnopharmacol. 2023, 312, 116484.10.1016/j.jep.2023.116484. PubMed DOI
Trott O.; Olson A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. 10.1002/jcc.21334. PubMed DOI PMC
Lee H. J.; Jhang S. T.; Jin H. J. Potential target site for inhibitors in MLS(B) antibiotic resistance. Antibiotics 2021, 10, 264.10.3390/antibiotics10030264. PubMed DOI PMC