Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome

. 2020 ; 11 () : 20. [epub] 20200626

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32607133

Extensive and complex links exist between transposable elements (TEs) and satellite DNA (satDNA), which are the two largest fractions of eukaryotic genome. These relationships have a crucial effect on genome structure, function and evolution. Here, we report a novel case of mutual relationships between TEs and satDNA. In the genomes of Chenopodium s. str. species, the deletion derivatives of tnp2 conserved domain of the newly discovered CACTA-like TE Jozin are involved in generating monomers of the most abundant satDNA family of the Chenopodium satellitome. The analysis of the relative positions of satDNA and different TEs utilizing assembled Illumina reads revealed several associations between satDNA arrays and the transposases of putative CACTA-like elements when an ~ 40 bp fragment of tnp2 served as the start monomer of the satDNA array. The high degree of identity of the consensus satDNA monomers of the investigated species and the tnp2 fragment (from 82.1 to 94.9%) provides evidence of the genesis of CficCl-61-40 satDNA family monomers from analogous regions of their respective parental elements. The results were confirmed via molecular genetic methods and Oxford Nanopore sequencing. The discovered phenomenon leads to the continuous replenishment of species genomes with new identical satDNA monomers, which in turn may increase species satellitomes similarity.

Zobrazit více v PubMed

Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinformat. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC

Kunze R, Saedler H, Lonning W-E. Plant transposable elements. Adv Bot Res. 1997;27:331–470. doi: 10.1016/S0065-2296(08)60284-0. DOI

Bennetzen JL. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 2000;4:347–353. doi: 10.1016/0966-842X(96)10042-1. PubMed DOI

Koonin EV. Evolution of genome architecture. Int J Biochem Cell Biol. 2009;41:298–306. doi: 10.1016/j.biocel.2008.09.015. PubMed DOI PMC

Biscotti MA, Olmo E, Heslop-Harrison JS. Repetitive DNA in eukaryotic genomes. Chromosom Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI

Satović E, Vojvoda Zeljko T, Luchetti A, Mantovani B, Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics. 2016;17:997. doi: 10.1186/s12864-016-3347-1. PubMed DOI PMC

Martienssen RA. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI

Kloc A, Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genet. 2008;24:511–517. doi: 10.1016/j.tig.2008.08.002. PubMed DOI

Garrido-Ramos MA. SatDNA in plants: more than just rubbish. Cytogenet Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI

Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosom Res. 2015;23:583–596. doi: 10.1007/s10577-015-9483-7. PubMed DOI

Kapitonov VV, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica. 1999;107:27–37. doi: 10.1023/A:1004030922447. PubMed DOI

Sharma A, Wolfgruber TK, Presting GG. Tandem repeats derived from centromeric retrotransposons. BMC Genomics. 2013;14:142. doi: 10.1186/1471-2164-14-142. PubMed DOI PMC

Chu G-L, Mosyakin SL, Clemants SE, et al. Chenopodiaceae. In: Wu Z, et al., editors. Flora of China 5. St. Louis: Missouri Botanical Garden Press; 2003. pp. 351–414.

Habibi F, Vít P, Rahiminejad M, Mandák B. Towards a better understanding of the C. album aggregate in the Middle East: a karyological, cytometric and morphometric investigation. J Syst Evol. 2018;56:231–242. doi: 10.1111/jse.12306. DOI

Mandák B, Krak K, Vít P, Pavlíková Z, Lomonosova MN, Habibi F, Lei W, Jellen EN, Douda J. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect Plant Ecol Evol System. 2016;23:18–32. doi: 10.1016/j.ppees.2016.09.004. DOI

Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, Wang L, Douda J, Storchova H. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Mol Phylogenet Evol. 2018;129:189–201. doi: 10.1016/j.ympev.2018.08.016. PubMed DOI

Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, Maughan PJ, et al. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd genome. Genome. 2011;54:710–717. doi: 10.1139/G11-035. PubMed DOI

Belyayev A, Josefiová J, Jandová M, Kalendar R, Krak K, Mandák B. Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, Concerted and Non-Concerted Evolution. Int J Mol Sci. 2019;20:5. doi: 10.3390/ijms20051201. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Heitkam T, Weber B, Walter I, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidisation of quinoa (Chenopodium quinoa) reveal unique a and B subgenomes. Plant J. 2020. 10.1111/tpj.14705. PubMed

Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, et al. Expansion of microsatellites on evolutionary young Y chromosome. PlOS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC

Majorek KA, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, Bujnicki JM. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucl Acids Res. 2014;42:4160–4179. doi: 10.1093/nar/gkt1414. PubMed DOI PMC

Gao D, Schmidt T, Jung C. Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome. 2000;43:1073–1080. doi: 10.1139/g00-084. PubMed DOI

Orzechowska M, Majka M, Weiss-Schneeweiss H, Kovařík A, Borowska-Zuchowska N, Kolano B. Organization and evolution of two repetitive sequences, 18-24J and 12-13P, in the genome of Chenopodium (Amaranthaceae) Genome. 2018;61:643–652. doi: 10.1139/gen-2018-0044. PubMed DOI

McClintock B. The control of gene action in maize. Brookhaven Symp Biol. 1965;18:162–184.

Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 2003;132:52–63. doi: 10.1104/pp.102.015743. PubMed DOI PMC

Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol. 2014;27:2573–2584. doi: 10.1111/jeb.1251. PubMed DOI

Raskina O, Belyayev A, Nevo E. Activity of the en/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res. 2004;12:153–161. doi: 10.1023/B:CHRO.0000013168.61359.43. PubMed DOI

McClintock B. The contribution of one component of a control system to versatility of gene expression. Carnegie Institution of Washington Year Book. 1971;70:5–17.

Vít P, Krak K, Trávníček P, Douda J, Lomonosova MN, Mandák B. Genome size stability across Eurasian Chenopodium species (Amaranthaceae) Bot J Linn Soc. 2016;182:637–649. doi: 10.1111/boj.12474. DOI

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. DD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucl Acids Res. 2017;45(D1):D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC

Vinga S, Almeida J. Alignment-free sequence comparison - a review. Bioinformatics. 2003;19:513–523. doi: 10.1093/bioinformatics/btg005. PubMed DOI

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2003;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molec Biol Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Schwarzacher T, Heslop-Harrison JS. Practical in situ hybridization. Oxford: BIOS Scientific Publishers; 2000.

Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucl Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...