Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32607133
PubMed Central
PMC7320549
DOI
10.1186/s13100-020-00219-7
PII: 219
Knihovny.cz E-zdroje
- Klíčová slova
- CACTA transposons, Chenopodium, Next generation sequencing, Oxford Nanopore sequencing, Satellite DNA, Transposase,
- Publikační typ
- časopisecké články MeSH
Extensive and complex links exist between transposable elements (TEs) and satellite DNA (satDNA), which are the two largest fractions of eukaryotic genome. These relationships have a crucial effect on genome structure, function and evolution. Here, we report a novel case of mutual relationships between TEs and satDNA. In the genomes of Chenopodium s. str. species, the deletion derivatives of tnp2 conserved domain of the newly discovered CACTA-like TE Jozin are involved in generating monomers of the most abundant satDNA family of the Chenopodium satellitome. The analysis of the relative positions of satDNA and different TEs utilizing assembled Illumina reads revealed several associations between satDNA arrays and the transposases of putative CACTA-like elements when an ~ 40 bp fragment of tnp2 served as the start monomer of the satDNA array. The high degree of identity of the consensus satDNA monomers of the investigated species and the tnp2 fragment (from 82.1 to 94.9%) provides evidence of the genesis of CficCl-61-40 satDNA family monomers from analogous regions of their respective parental elements. The results were confirmed via molecular genetic methods and Oxford Nanopore sequencing. The discovered phenomenon leads to the continuous replenishment of species genomes with new identical satDNA monomers, which in turn may increase species satellitomes similarity.
Zobrazit více v PubMed
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinformat. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC
Kunze R, Saedler H, Lonning W-E. Plant transposable elements. Adv Bot Res. 1997;27:331–470. doi: 10.1016/S0065-2296(08)60284-0. DOI
Bennetzen JL. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 2000;4:347–353. doi: 10.1016/0966-842X(96)10042-1. PubMed DOI
Koonin EV. Evolution of genome architecture. Int J Biochem Cell Biol. 2009;41:298–306. doi: 10.1016/j.biocel.2008.09.015. PubMed DOI PMC
Biscotti MA, Olmo E, Heslop-Harrison JS. Repetitive DNA in eukaryotic genomes. Chromosom Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI
Satović E, Vojvoda Zeljko T, Luchetti A, Mantovani B, Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics. 2016;17:997. doi: 10.1186/s12864-016-3347-1. PubMed DOI PMC
Martienssen RA. Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet. 2003;35:213–214. doi: 10.1038/ng1252. PubMed DOI
Kloc A, Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genet. 2008;24:511–517. doi: 10.1016/j.tig.2008.08.002. PubMed DOI
Garrido-Ramos MA. SatDNA in plants: more than just rubbish. Cytogenet Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosom Res. 2015;23:583–596. doi: 10.1007/s10577-015-9483-7. PubMed DOI
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica. 1999;107:27–37. doi: 10.1023/A:1004030922447. PubMed DOI
Sharma A, Wolfgruber TK, Presting GG. Tandem repeats derived from centromeric retrotransposons. BMC Genomics. 2013;14:142. doi: 10.1186/1471-2164-14-142. PubMed DOI PMC
Chu G-L, Mosyakin SL, Clemants SE, et al. Chenopodiaceae. In: Wu Z, et al., editors. Flora of China 5. St. Louis: Missouri Botanical Garden Press; 2003. pp. 351–414.
Habibi F, Vít P, Rahiminejad M, Mandák B. Towards a better understanding of the C. album aggregate in the Middle East: a karyological, cytometric and morphometric investigation. J Syst Evol. 2018;56:231–242. doi: 10.1111/jse.12306. DOI
Mandák B, Krak K, Vít P, Pavlíková Z, Lomonosova MN, Habibi F, Lei W, Jellen EN, Douda J. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect Plant Ecol Evol System. 2016;23:18–32. doi: 10.1016/j.ppees.2016.09.004. DOI
Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, Wang L, Douda J, Storchova H. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Mol Phylogenet Evol. 2018;129:189–201. doi: 10.1016/j.ympev.2018.08.016. PubMed DOI
Kolano B, Gardunia BW, Michalska M, Bonifacio A, Fairbanks D, Maughan PJ, et al. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd genome. Genome. 2011;54:710–717. doi: 10.1139/G11-035. PubMed DOI
Belyayev A, Josefiová J, Jandová M, Kalendar R, Krak K, Mandák B. Natural history of a satellite DNA family: from the ancestral genome component to species-specific sequences, Concerted and Non-Concerted Evolution. Int J Mol Sci. 2019;20:5. doi: 10.3390/ijms20051201. PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Heitkam T, Weber B, Walter I, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidisation of quinoa (Chenopodium quinoa) reveal unique a and B subgenomes. Plant J. 2020. 10.1111/tpj.14705. PubMed
Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, et al. Expansion of microsatellites on evolutionary young Y chromosome. PlOS ONE. 2013;8:e45519. doi: 10.1371/journal.pone.0045519. PubMed DOI PMC
Majorek KA, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, Bujnicki JM. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucl Acids Res. 2014;42:4160–4179. doi: 10.1093/nar/gkt1414. PubMed DOI PMC
Gao D, Schmidt T, Jung C. Molecular characterization and chromosomal distribution of species-specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome. 2000;43:1073–1080. doi: 10.1139/g00-084. PubMed DOI
Orzechowska M, Majka M, Weiss-Schneeweiss H, Kovařík A, Borowska-Zuchowska N, Kolano B. Organization and evolution of two repetitive sequences, 18-24J and 12-13P, in the genome of Chenopodium (Amaranthaceae) Genome. 2018;61:643–652. doi: 10.1139/gen-2018-0044. PubMed DOI
McClintock B. The control of gene action in maize. Brookhaven Symp Biol. 1965;18:162–184.
Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 2003;132:52–63. doi: 10.1104/pp.102.015743. PubMed DOI PMC
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol. 2014;27:2573–2584. doi: 10.1111/jeb.1251. PubMed DOI
Raskina O, Belyayev A, Nevo E. Activity of the en/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res. 2004;12:153–161. doi: 10.1023/B:CHRO.0000013168.61359.43. PubMed DOI
McClintock B. The contribution of one component of a control system to versatility of gene expression. Carnegie Institution of Washington Year Book. 1971;70:5–17.
Vít P, Krak K, Trávníček P, Douda J, Lomonosova MN, Mandák B. Genome size stability across Eurasian Chenopodium species (Amaranthaceae) Bot J Linn Soc. 2016;182:637–649. doi: 10.1111/boj.12474. DOI
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. DD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucl Acids Res. 2017;45(D1):D200–D203. doi: 10.1093/nar/gkw1129. PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Vinga S, Almeida J. Alignment-free sequence comparison - a review. Bioinformatics. 2003;19:513–523. doi: 10.1093/bioinformatics/btg005. PubMed DOI
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2003;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molec Biol Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Schwarzacher T, Heslop-Harrison JS. Practical in situ hybridization. Oxford: BIOS Scientific Publishers; 2000.
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucl Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC
A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium
Distribution of Merlin in eukaryotes and first report of DNA transposons in kinetoplastid protists