The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the "library hypothesis"

. 2020 ; 15 (10) : e0241206. [epub] 20201027

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33108401

Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome. Highly variable satDNA is involved in various genome functions, and a clear link between satellites and phenotypes exists in a wide range of organisms. However, little is known about the origin and temporal dynamics of satDNA. The "library hypothesis" indicates that the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although this hypothesis has received some confirmation, a number of its aspects are still controversial. A recently developed next-generation sequencing (NGS) method allows the determination of the satDNA landscape and could shed light on unresolved issues. Here, we explore low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid species of the Chenopodium album aggregate. The application of the Illumina read assembly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ hybridization allowed the estimation of eight satDNA families within the studied group, six of which were newly described. The obtained set of satDNA families of different origins can be divided into several categories, namely group-specific, lineage-specific and species-specific. In the process of evolution, satDNA families can be transmitted vertically and can be eliminated over time. Moreover, transposable element-derived satDNA families may appear repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained data refute the "library hypothesis", rather than confirming it, and in our opinion, it is more appropriate to speak about "the library of the mechanisms of origin".

Zobrazit více v PubMed

Kit S. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. Journal of molecular biology. 1961; 3, 711–716. 10.1016/s0022-2836(61)80075-2 PubMed DOI

Wei KH-C, Lower SE, Caldas IV, Sless TJS, Barbash DA, Clark AG. Variable Rates of Simple Satellite Gains across the Drosophila Phylogeny. Molecular biology and evolution. 2018; 35(4), 925–941. 10.1093/molbev/msy005 PubMed DOI PMC

Martienssen RA. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genetics. 2003; 35(3), 213–214. 10.1038/ng1252 PubMed DOI

Kloc A, Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genetics. 2008; 24(10), 511–517. 10.1016/j.tig.2008.08.002 PubMed DOI

Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics, Proteomics & Bioinformatics. 2014; 12(4): 164–171. 10.1016/j.gpb.2014.07.003 PubMed DOI PMC

Garrido-Ramos MA. SatDNA in plants: more than just rubbish. Cytogenetics and Genome Research. 2015; 146(2): 153–170. 10.1159/000437008 PubMed DOI

Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl, M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Research. 2015; 23(3): 583–596. 10.1007/s10577-015-9483-7 PubMed DOI

Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas, new approaches. Current opinion in genetics & development. 2018; 49, 70–78. 10.1016/j.gde.2018.03.003 PubMed DOI PMC

Salser W, Bowen S, Browne D, El Adli F, Fedoroff N, Fry K, et al. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Federal Proceedings. 1976; 35, 23–35. PubMed

Southern EM. Base sequence and evolution of guinea pig satellite DNA. Nature. 1970; 227, 794–798. 10.1038/227794a0 PubMed DOI

Mestrović N, Plohl M, Mravinac B, Ugarković D. Evolution of satellite DNAs from the genus Palorus—experimental evidence for the ‘library’ hypothesis. Molecular biology and evolution. 1998; 15(8), 1062–1068. 10.1093/oxfordjournals.molbev.a026005 PubMed DOI

Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. Genome dynamics. 2012; 7: 126–152. 10.1159/000337122 PubMed DOI

Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Scientific reports. 2016; 6: 28333 10.1038/srep28333 PubMed DOI PMC

Palacios-Gimenez OM, Milani D, Song H, Marti DA, López-León MD, Ruiz-Ruano FJ, et al. Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome biology and evolution. 2020; 12(3): 88–102. 10.1093/gbe/evaa018 PubMed DOI PMC

Belyayev A. Bursts of transposable elements as an evolutionary driving force. Journal of Evolutionary Biology. 2014; 27(12): 2573–2584. 10.1111/jeb.12513 PubMed DOI

Belyayev A, Josefiová J, Jandová M, Mahelka V, Krak K, Mandák B. (2020) Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome. Mobile DNA, 11, 20 10.1186/s13100-020-00219-7 PubMed DOI PMC

Von Bubnoff A. Next-Generation Sequencing: The Race Is On. Cell. 2008; 132(7): 721–723. 10.1016/j.cell.2008.02.028 PubMed DOI

Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, et al. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution. 2018; 129: 189–201. 10.1016/j.ympev.2018.08.016 PubMed DOI

Belyayev A, Josefiová J, Jandová M, Kalendar R, Krak K, Mandák B. Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution. International journal of molecular sciences. 2019; 20(5), 1201 10.3390/ijms20051201 PubMed DOI PMC

Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M. N., Habibi F., et al. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics. 2016, 23, 18–32. 10.1016/j.ppees.2016.09.004 DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12), 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research. 1999; 27(2), 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC

Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Research. 2005; 33, W540–W543. 10.1093/nar/gki478 PubMed DOI PMC

Sultana N, Menzel G, Heitkam T, Kojima KK, Bao W, Serçe S. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes. 2020; 11(5) 10.3390/genes11050527 PubMed DOI PMC

Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017; 109(4–5): 312–319. 10.1016/j.ygeno.2017.05.005 PubMed DOI

Vinga S, Almeida J. Alignment-free sequence comparison—a review. Bioinformatics. 2003; 19: 513–523. 10.1093/bioinformatics/btg005 PubMed DOI

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2003; 5, 113 10.1186/1471-2105-5-113 PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 2018; 35(6), 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC

Heitkam T, Weber B, Walter I, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidisation of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. Plant Journal. 2020. 10.1111/tpj.14705 PubMed DOI

Plohl M, Petrović V, Luchetti A, Ricci A, Satović E, Passamonti M, et al. Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity. 2010; 104(6), 543–551. 10.1038/hdy.2009.141 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace