The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the "library hypothesis"
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33108401
PubMed Central
PMC7591062
DOI
10.1371/journal.pone.0241206
PII: PONE-D-20-21788
Knihovny.cz E-zdroje
- MeSH
- Chenopodium album genetika růst a vývoj MeSH
- diploidie * MeSH
- DNA rostlinná analýza genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- genová knihovna MeSH
- molekulární evoluce * MeSH
- satelitní DNA analýza genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- satelitní DNA MeSH
Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome. Highly variable satDNA is involved in various genome functions, and a clear link between satellites and phenotypes exists in a wide range of organisms. However, little is known about the origin and temporal dynamics of satDNA. The "library hypothesis" indicates that the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although this hypothesis has received some confirmation, a number of its aspects are still controversial. A recently developed next-generation sequencing (NGS) method allows the determination of the satDNA landscape and could shed light on unresolved issues. Here, we explore low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid species of the Chenopodium album aggregate. The application of the Illumina read assembly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ hybridization allowed the estimation of eight satDNA families within the studied group, six of which were newly described. The obtained set of satDNA families of different origins can be divided into several categories, namely group-specific, lineage-specific and species-specific. In the process of evolution, satDNA families can be transmitted vertically and can be eliminated over time. Moreover, transposable element-derived satDNA families may appear repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained data refute the "library hypothesis", rather than confirming it, and in our opinion, it is more appropriate to speak about "the library of the mechanisms of origin".
Department of Agricultural Sciences University of Helsinki Helsinki Finland
National Laboratory Astana Nazarbayev University Nur Sultan Kazakhstan
The Czech Academy of Sciences Institute of Botany Průhonice Czech Republic
Zobrazit více v PubMed
Kit S. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. Journal of molecular biology. 1961; 3, 711–716. 10.1016/s0022-2836(61)80075-2 PubMed DOI
Wei KH-C, Lower SE, Caldas IV, Sless TJS, Barbash DA, Clark AG. Variable Rates of Simple Satellite Gains across the Drosophila Phylogeny. Molecular biology and evolution. 2018; 35(4), 925–941. 10.1093/molbev/msy005 PubMed DOI PMC
Martienssen RA. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genetics. 2003; 35(3), 213–214. 10.1038/ng1252 PubMed DOI
Kloc A, Martienssen R. RNAi, heterochromatin and the cell cycle. Trends Genetics. 2008; 24(10), 511–517. 10.1016/j.tig.2008.08.002 PubMed DOI
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics, Proteomics & Bioinformatics. 2014; 12(4): 164–171. 10.1016/j.gpb.2014.07.003 PubMed DOI PMC
Garrido-Ramos MA. SatDNA in plants: more than just rubbish. Cytogenetics and Genome Research. 2015; 146(2): 153–170. 10.1159/000437008 PubMed DOI
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl, M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Research. 2015; 23(3): 583–596. 10.1007/s10577-015-9483-7 PubMed DOI
Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas, new approaches. Current opinion in genetics & development. 2018; 49, 70–78. 10.1016/j.gde.2018.03.003 PubMed DOI PMC
Salser W, Bowen S, Browne D, El Adli F, Fedoroff N, Fry K, et al. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Federal Proceedings. 1976; 35, 23–35. PubMed
Southern EM. Base sequence and evolution of guinea pig satellite DNA. Nature. 1970; 227, 794–798. 10.1038/227794a0 PubMed DOI
Mestrović N, Plohl M, Mravinac B, Ugarković D. Evolution of satellite DNAs from the genus Palorus—experimental evidence for the ‘library’ hypothesis. Molecular biology and evolution. 1998; 15(8), 1062–1068. 10.1093/oxfordjournals.molbev.a026005 PubMed DOI
Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. Genome dynamics. 2012; 7: 126–152. 10.1159/000337122 PubMed DOI
Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Scientific reports. 2016; 6: 28333 10.1038/srep28333 PubMed DOI PMC
Palacios-Gimenez OM, Milani D, Song H, Marti DA, López-León MD, Ruiz-Ruano FJ, et al. Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome biology and evolution. 2020; 12(3): 88–102. 10.1093/gbe/evaa018 PubMed DOI PMC
Belyayev A. Bursts of transposable elements as an evolutionary driving force. Journal of Evolutionary Biology. 2014; 27(12): 2573–2584. 10.1111/jeb.12513 PubMed DOI
Belyayev A, Josefiová J, Jandová M, Mahelka V, Krak K, Mandák B. (2020) Transposons and satellite DNA: on the origin of the major satellite DNA family in the Chenopodium genome. Mobile DNA, 11, 20 10.1186/s13100-020-00219-7 PubMed DOI PMC
Von Bubnoff A. Next-Generation Sequencing: The Race Is On. Cell. 2008; 132(7): 721–723. 10.1016/j.cell.2008.02.028 PubMed DOI
Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, et al. Hybridization and polyploidization within the Chenopodium album aggregate analyzed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution. 2018; 129: 189–201. 10.1016/j.ympev.2018.08.016 PubMed DOI
Belyayev A, Josefiová J, Jandová M, Kalendar R, Krak K, Mandák B. Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution. International journal of molecular sciences. 2019; 20(5), 1201 10.3390/ijms20051201 PubMed DOI PMC
Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M. N., Habibi F., et al. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics. 2016, 23, 18–32. 10.1016/j.ppees.2016.09.004 DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12), 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research. 1999; 27(2), 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC
Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Research. 2005; 33, W540–W543. 10.1093/nar/gki478 PubMed DOI PMC
Sultana N, Menzel G, Heitkam T, Kojima KK, Bao W, Serçe S. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes. 2020; 11(5) 10.3390/genes11050527 PubMed DOI PMC
Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017; 109(4–5): 312–319. 10.1016/j.ygeno.2017.05.005 PubMed DOI
Vinga S, Almeida J. Alignment-free sequence comparison—a review. Bioinformatics. 2003; 19: 513–523. 10.1093/bioinformatics/btg005 PubMed DOI
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2003; 5, 113 10.1186/1471-2105-5-113 PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 2018; 35(6), 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Heitkam T, Weber B, Walter I, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidisation of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. Plant Journal. 2020. 10.1111/tpj.14705 PubMed DOI
Plohl M, Petrović V, Luchetti A, Ricci A, Satović E, Passamonti M, et al. Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity. 2010; 104(6), 543–551. 10.1038/hdy.2009.141 PubMed DOI
A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium