A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium

. 2025 Mar ; 18 (1) : e70010.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40018873

Grantová podpora
CZ.02.01.01/00/22_008/0004581 TowArds Next 997 GENeration Crops
RVO67985939 Czech Science Foundation
20-20286S Czech Science Foundation
1022158 National Institute of Food and Agriculture

The genus Chenopodium L. is characterized by its wide geographic distribution and ecological adaptability. Species such as quinoa (Chenopodium quinoa Willd.) have served as domesticated staple crops for centuries. Wild Chenopodium species exhibit diverse niche adaptations and are important genetic reservoirs for beneficial agronomic traits, including disease resistance and climate hardiness. To harness the potential of the wild taxa for crop improvement, we developed a Chenopodium pangenome through the assembly and comparative analyses of 12 Chenopodium species that encompass the eight known genome types (A-H). Six of the species are new chromosome-scale assemblies, and many are polyploids; thus, a total of 20 genomes were included in the pangenome analyses. We show that the genomes vary dramatically in size with the D genome being the smallest (∼370 Mb) and the B genome being the largest (∼700 Mb) and that genome size was correlated with independent expansions of the Copia and Gypsy LTR retrotransposon families, suggesting that transposable elements have played a critical role in the evolution of the Chenopodium genomes. We annotated a total of 33,457 pan-Chenopodium gene families, of which ∼65% were classified as shell (2% private). Phylogenetic analysis clarified the evolutionary relationships among the genome lineages, notably resolving the taxonomic placement of the F genome while highlighting the uniqueness of the A genome in the Western Hemisphere. These genomic resources are particularly important for understanding the secondary and tertiary gene pools available for the improvement of the domesticated chenopods while furthering our understanding of the evolution and complexity within the genus.

Zobrazit více v PubMed

Abeyawardana, O. A. J. , Moravec, T. , Krüger, M. , Belz, C. , Gutierrez‐Larruscain, D. , Vondráková, Z. , Eliášová, K. , & Štorchová, H. (2023). The FLOWERING LOCUS T LIKE 2‐1 gene of Chenopodium triggers precocious flowering in Arabidopsis seedlings. Plant Signaling & Behavior, 18(1), 2239420. 10.1080/15592324.2023.2239420 PubMed DOI PMC

Abugoch James, L. E. (2009). Quinoa (Chenopodium quinoa Willd.). In Taylor S. L. (Ed.), Advances in food and nutrition research (pp. 1–31). Elsevier. 10.1016/s1043-4526(09)58001-1 PubMed DOI

Alandia, G. , Rodriguez, J. P. , Jacobsen, S.‐E. , Bazile, D. , & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429. 10.1016/j.gfs.2020.100429 DOI

Bajwa, A. A. , Zulfiqar, U. , Sadia, S. , Bhowmik, P. , & Chauhan, B. S. (2019). A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: Two troublesome agricultural and environmental weeds. Environmental Science and Pollution Research, 26, 5357–5371. 10.1007/s11356-018-04104-y PubMed DOI

Basantes‐Morales, E. R. , Alconada, M. M. , & Pantoja, J. L. (2019). Quinoa (Chenopodium quinoa Willd.) production in the Andean region: Challenges and potentials. Journal of Experimental Agriculture International, 36(6), 1–18. 10.9734/jeai/2019/v36i630251 DOI

Belyayev, A. , Jandová, M. , Josefiová, J. , Kalendar, R. , Mahelka, V. , Mandák, B. , & Krak, K. (2020). The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis”. PLoS ONE, 15, e0241206. 10.1371/journal.pone.0241206 PubMed DOI PMC

Belyayev, A. , Josefiová, J. , Jandová, M. , Kalendar, R. , Krak, K. , & Mandák, B. (2019). Natural history of a satellite DNA family: From the ancestral genome component to species‐specific sequences, concerted and non‐concerted evolution. International Journal of Molecular Sciences, 20, 1201. 10.3390/ijms20051201 PubMed DOI PMC

Belyayev, A. , Josefiová, J. , Jandová, M. , Mahelka, V. , Krak, K. , & Mandák, B. (2020). Transposons and satellite DNA: On the origin of the major satellite DNA family in the Chenopodium genome. Mobile DNA, 11, 20. 10.1186/s13100-020-00219-7 PubMed DOI PMC

Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27, 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC

Bhargava, A. , & Srivastava, S. (2019). Advantages and cost of participatory plant breeding. Participatory plant breeding: Concept and applications (pp. 87–107). Springer.

Bickhart, D. M. , Rosen, B. D. , Koren, S. , Sayre, B. L. , Hastie, A. R. , Chan, S. , Lee, J. , Lam, E. T. , Liachko, I. , Sullivan, S. T. , Burton, J. N. , Huson, H. J. , Nystrom, J. C. , Kelley, C. M. , Hutchison, J. L. , Zhou, Y. , Sun, J. , Crisà, A. , Ponce de León, F. A. , … Smith, T. P. L. (2017). Single‐molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 49, 643–650. 10.1038/ng.3802 PubMed DOI PMC

Bucchini, F. , Del Cortona, A. , Kreft, Ł. , Botzki, A. , Van Bel, M. , & Vandepoele, K. (2021). TRAPID 2.0: A web application for taxonomic and functional analysis of de novo transcriptomes. Nucleic Acids Research, 49, e101–e101. 10.1093/nar/gkab565 PubMed DOI PMC

Burton, J. N. , Adey, A. , Patwardhan, R. P. , Qiu, R. , Kitzman, J. O. , & Shendure, J. (2013). Chromosome‐scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31, 1119–1125. 10.1038/nbt.2727 PubMed DOI PMC

Chen, Y. , Zhang, Y. , Wang, A. Y. , Gao, M. , & Chong, Z. (2021). Accurate long‐read de novo assembly evaluation with Inspector. Genome Biology, 22, 312. 10.1186/s13059-021-02527-4 PubMed DOI PMC

Cheng, H. , Concepcion, G. T. , Feng, X. , Zhang, H. , & Li, H. (2021). Haplotype‐resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18, 170–175. 10.1038/s41592-020-01056-5 PubMed DOI PMC

Dakhili, S. , Abdolalizadeh, L. , Hosseini, S. M. , Shojaee‐Aliabadi, S. , & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food Chemistry, 299, 125161. 10.1016/j.foodchem.2019.125161 PubMed DOI

Danecek, P. , Bonfield, J. , Liddle, J. , Marshall, J. , Ohan, V. , Pollard, M. , Whitman, A. , Keane, T. , McCarthy, S. , Davies, R. , & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. 10.1093/gigascience/giab008 PubMed DOI PMC

Drabešová, J. , Černá, L. , Mašterová, H. , Koloušková, P. , Potocký, M. , & Štorchová, H. (2016). The evolution of the FT/TFL1 genes in Amaranthaceae and their expression patterns in the course of vegetative growth and flowering in Chenopodium rubrum . G3 Genes|Genomes|Genetics, 6, 3065–3076. 10.1534/g3.116.028639 PubMed DOI PMC

Du, J. , Tian, Z. , Hans, C. S. , Laten, H. M. , Cannon, S. B. , Jackson, S. A. , Shoemaker, R. C. , & Ma, J. (2010). Evolutionary conservation, diversity and specificity of LTR‐retrotransposons in flowering plants: Insights from genome‐wide analysis and multi‐specific comparison. The Plant Journal, 63, 584–598. 10.1111/j.1365-313X.2010.04263.x PubMed DOI

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC

Emms, D. M. , & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238. 10.1186/s13059-019-1832-y PubMed DOI PMC

Flynn, J. M. , Hubley, R. , Goubert, C. , Rosen, J. , Clark, A. G. , Feschotte, C. , & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 117, 9451–9457. 10.1073/pnas.1921046117 PubMed DOI PMC

Gabriel, L. , Brůna, T. , Hoff, K. J. , Ebel, M. , Lomsadze, A. , Borodovsky, M. , & Stanke, M. (2024). BRAKER3: Fully automated genome annotation using RNA‐seq and protein evidence with GeneMark‐ETP, AUGUSTUS and TSEBRA . 10.1101/2023.06.10.544449 PubMed DOI PMC

Galindo‐González, L. , Mhiri, C. , Deyholos, M. K. , & Grandbastien, M.‐A. (2017). LTR‐retrotransposons in plants: Engines of evolution. Gene, 626, 14–25. 10.1016/j.gene.2017.04.051 PubMed DOI

Gandarillas, H. , Alandia, S. , Cardozo, A. , & Mujica, A. (1979). "Mejoramiento genético'' in Qinua y Kaniwa cultivos Andinos. Instituto Interamericano de Ciencias Agrícolas.

Garrido‐Ramos, M. A. (2017). Satellite DNA: An evolving topic. Genes, 8(9), 230. 10.3390/genes8090230 PubMed DOI PMC

Gnerre, S. , MacCallum, I. , Przybylski, D. , Ribeiro, F. J. , Burton, J. N. , Walker, B. J. , Sharpe, T. , Hall, G. , Shea, T. P. , Sykes, S. , Berlin, A. M. , Aird, D. , Costello, M. , Daza, R. , Williams, L. , Nicol, R. , Gnirke, A. , Nusbaum, C. , Lander, E. S. , & Jaffe, D. B. (2011). High‐quality draft assemblies of mammalian genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences, 108, 1513–1518. 10.1073/pnas.1017351108 PubMed DOI PMC

Gutierrez‐Larruscain, D. , Krüger, M. , Abeyawardana, O. A. J. , Belz, C. , Dobrev, P. I. , Vaňková, R. , Eliášová, K. , Vondráková, Z. , Juříček, M. , & Štorchová, H. (2022). The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459. Plant Science, 320, 111279. 10.1016/j.plantsci.2022.111279 PubMed DOI

Heitkam, T. , Weber, B. , Walter, I. , Liedtke, S. , Ost, C. , & Schmidt, T. (2020). Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. The Plant Journal, 103, 32–52. 10.1111/tpj.14705 PubMed DOI

Hirsch, C. N. , Foerster, J. M. , Johnson, J. M. , Sekhon, R. S. , Muttoni, G. , Vaillancourt, B. , Peñagaricano, F. , Lindquist, E. , Pedraza, M. A. , Barry, K. , de Leon, N. , Kaeppler, S. M. , & Buell, C. R. (2014). Insights into the maize pan‐genome and pan‐transcriptome. The Plant Cell, 26, 121–135. 10.1105/tpc.113.119982 PubMed DOI PMC

Huang, N. , & Li, H. (2023). Compleasm: A faster and more accurate reimplementation of BUSCO. Bioinformatics, 39, btad595. 10.1093/bioinformatics/btad595 PubMed DOI PMC

Jarvis, D. E. , Ho, Y. S. , Lightfoot, D. J. , Schmöckel, S. M. , Li, B. , Borm, T. J. A. , Ohyanagi, H. , Mineta, K. , Michell, C. T. , Saber, N. , Kharbatia, N. M. , Rupper, R. R. , Sharp, A. R. , Dally, N. , Boughton, B. A. , Woo, Y. H. , Gao, G. , Schijlen, E. G. W. M. , Guo, X. , … Tester, M. (2017). The genome of Chenopodium quinoa . Nature, 542, 307–312. 10.1038/nature21370 PubMed DOI

Jarvis, D. E. , Sproul, J. S. , Navarro‐Domínguez, B. , Krak, K. , Jaggi, K. , Huang, Y.‐F. , Huang, T.‐Y. , Lin, T. C. , Jellen, E. N. , & Maughan, P. J. (2022). Chromosome‐scale genome assembly of the hexaploid Taiwanese goosefoot “Djulis” (Chenopodium formosanum). Genome Biology and Evolution, 14, evac120. 10.1093/gbe/evac120 PubMed DOI PMC

Jayakodi, M. , Padmarasu, S. , Haberer, G. , Bonthala, V. S. , Gundlach, H. , Monat, C. , Lux, T. , Kamal, N. , Lang, D. , Himmelbach, A. , Ens, J. , Zhang, X.‐Q. , Angessa, T. T. , Zhou, G. , Tan, C. , Hill, C. , Wang, P. , Schreiber, M. , Boston, L. B. , … Stein, N. (2020). The barley pan‐genome reveals the hidden legacy of mutation breeding. Nature, 588, 284–289. 10.1038/s41586-020-2947-8 PubMed DOI PMC

Jin, J.‐J. , Yu, W.‐B. , Yang, J.‐B. , Song, Y. , dePamphilis, C. W. , Yi, T.‐S. , & Li, D.‐Z. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241. 10.1186/s13059-020-02154-5 PubMed DOI PMC

Jones, P. , Binns, D. , Chang, H.‐Y. , Fraser, M. , Li, W. , McAnulla, C. , McWilliam, H. , Maslen, J. , Mitchell, A. , Nuka, G. , Pesseat, S. , Quinn, A. F. , Sangrador‐Vegas, A. , Scheremetjew, M. , Yong, S.‐Y. , Lopez, R. , & Hunter, S. (2014). InterProScan 5: Genome‐scale protein function classification. Bioinformatics (Oxford, England), 30, 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC

Kalyaanamoorthy, S. , Minh, B. Q. , Wong, T. K. F. , von Haeseler, A. , & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Kardailsky, I. , Shukla, V. K. , Ahn, J. H. , Dagenais, N. , Christensen, S. K. , Nguyen, J. T. , Chory, J. , Harrison, M. J. , & Weigel, D. (1999). Activation tagging of the floral inducer FT . Science, 286, 1962–1965. 10.1126/science.286.5446.1962 PubMed DOI

Katoh, K. , & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kistler, L. , & Shapiro, B. (2011). Ancient DNA confirms a local origin of domesticated chenopod in eastern North America. Journal of Archaeological Science, 38, 3549–3554. 10.1016/j.jas.2011.08.023 DOI

Kolano, B. , Gardunia, B. W. , Michalska, M. , Bonifacio, A. , Fairbanks, D. , Maughan, P. J. , Coleman, C. E. , Stevens, M. R. , Jellen, E. N. , & Maluszynska, J. (2011). Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome, 54, 710–717. 10.1139/g11-035 PubMed DOI

Koprivova, A. , Schuck, S. , Jacoby, R. P. , Klinkhammer, I. , Welter, B. , Leson, L. , Martyn, A. , Nauen, J. , Grabenhorst, N. , Mandelkow, J. F. , Zuccaro, A. , Zeier, J. , & Kopriva, S. (2019). Root‐specific camalexin biosynthesis controls the plant growth‐promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences, 116, 15735–15744. 10.1073/pnas.1818604116 PubMed DOI PMC

Koren, S. , Walenz, B. P. , Berlin, K. , Miller, J. R. , Bergman, N. H. , & Phillippy, A. M. (2017). Canu: Scalable and accurate long‐read assembly via adaptive k‐mer weighting and repeat separation. Genome Research, 27, 722–736. 10.1101/gr.215087.116 PubMed DOI PMC

Krak, K. , Vít, P. , Belyayev, A. , Douda, J. , Hreusová, L. , & Mandák, B. (2016). Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): A molecular and cytogenetic insight. PLoS ONE, 11, e0161063. 10.1371/journal.pone.0161063 PubMed DOI PMC

Kursel, L. E. , & Malik, H. S. (2016). Centromeres. Current Biology, 26, R487–R490. 10.1016/j.cub.2016.05.031 PubMed DOI

Kuznetsov, D. , Tegenfeldt, F. , Manni, M. , Seppey, M. , Berkeley, M. , Kriventseva, E. V. , & Zdobnov, E. M. (2023). OrthoDB v11: Annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Research, 51, D445–D451. 10.1093/nar/gkac998 PubMed DOI PMC

Laetsch, D. R. , & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6, 1287. 10.12688/f1000research.12232.1 DOI

Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094–3100. 10.1093/bioinformatics/bty191 PubMed DOI PMC

Li, H. , & Durbin, R. (2010). Fast and accurate long‐read alignment with Burrows–Wheeler transform. Bioinformatics, 26, 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC

Li, W. , & Godzik, A. (2006). Cd‐hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659. 10.1093/bioinformatics/btl158 PubMed DOI

Li, Y. , Zhou, G. , Ma, J. , Jiang, W. , Jin, L. , Zhang, Z. , Guo, Y. , Zhang, J. , Sui, Y. , Zheng, L. , Zhang, S. , Zuo, Q. , Shi, X. , Li, Y. , Zhang, W. , Hu, Y. , Kong, G. , Hong, H. , Tan, B. , … Qiu, L. (2014). De novo assembly of soybean wild relatives for pan‐genome analysis of diversity and agronomic traits. Nature Biotechnology, 32, 1045–1052. 10.1038/nbt.2979 PubMed DOI

Lovell, J. T. , Sreedasyam, A. , Schranz, M. E. , Wilson, M. , Carlson, J. W. , Harkess, A. , Emms, D. , Goodstein, D. M. , & Schmutz, J. (2022). GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife, 11, e78526. 10.7554/eLife.78526 PubMed DOI PMC

Ludwig, C. D. , Maughan, P. J. , Jellen, E. N. , & Davis, T. M. (2025). The genome of Chenopodium ficifolium: Developing genetic resources and a diploid model system for allotetraploid quinoa. BioRxiv. 10.1101/2025.01.17.633571 DOI

Ma, J. , & Bennetzen, J. L. (2004). Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 12404–12410. 10.1073/pnas.0403715101 PubMed DOI PMC

Madlung, A. , & Wendel, J. F. (2013). Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenetic and Genome Research, 140, 270–285. 10.1159/000351430 PubMed DOI

Mandák, B. , Krak, K. , Vít, P. , Pavlíková, Z. , Lomonosova, M. N. , Habibi, F. , Wang, L. , Jellen, E. N. , & Douda, J. (2016). How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics, 23, 18–32.

Mandák, B. , Krak, K. , Vít, P. , Lomonosova, M. N. , Belyayev, A. , Habibi, F. , Wang, L. , Douda, J. , & Štorchová, H. (2018). Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution, 129, 189–201. 10.1016/j.ympev.2018.08.016 PubMed DOI

Mandák, B. , Trávníček, P. , Paštová, L. , & Kořínková, D. (2012). Is hybridization involved in the evolution of the Chenopodium album aggregate? An analysis based on chromosome counts and genome size estimation. Flora—Morphology, Distribution, Functional Ecology of Plants, 207, 530–540. 10.1016/j.flora.2012.03.010 DOI

Mangelson, H. , Jarvis, D. E. , Mollinedo, P. , Rollano‐Penaloza, O. M. , Palma‐Encinas, V. D. , Gomez‐Pando, L. R. , Jellen, E. N. , & Maughan, P. J. (2019). The genome of Chenopodium pallidicaule: An emerging Andean super grain. Applications in Plant Sciences, 7, e11300. 10.1002/aps3.11300 PubMed DOI PMC

Manni, M. , Berkeley, M. R. , Seppey, M. , Simão, F. A. , & Zdobnov, E. M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38, 4647–4654. 10.1093/molbev/msab199 PubMed DOI PMC

Maughan, P. J. , Chaney, L. , Lightfoot, D. J. , Cox, B. J. , Tester, M. , Jellen, E. N. , & Jarvis, D. E. (2019). Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Scientific Reports, 9, 185. 10.1038/s41598-018-36693-6 PubMed DOI PMC

Maughan, P. J. , Jarvis, D. E. , de la Cruz‐Torres, E. , Jaggi, K. E. , Warner, H. C. , Marcheschi, A. K. , Bertero, H. D. , Gomez‐Pando, L. , Fuentes, F. , Mayta‐Anco, M. E. , Curti, R. , Rey, E. , Tester, M. , & Jellen, E. N. (2024). North American pitseed goosefoot (Chenopodium berlandieri) is a genetic resource to improve Andean quinoa (C. quinoa). Scientific Reports, 14(1), 12345. 10.1038/s41598-024-63106-8 PubMed DOI PMC

Maughan, P. J. , Kolano, B. A. , Maluszynska, J. , Coles, N. D. , Bonifacio, A. , Rojas, J. , Coleman, C. E. , Stevens, M. R. , Fairbanks, D. J. , Parkinson, S. E. , & Jellen, E. N. (2006). Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri . Genome, 49, 825–839. 10.1139/g06-033 PubMed DOI

McCartney, A. M. , Shafin, K. , Alonge, M. , Bzikadze, A. V. , Formenti, G. , Fungtammasan, A. , Howe, K. , Jain, C. , Koren, S. , Logsdon, G. A. , Miga, K. H. , Mikheenko, A. , Paten, B. , Shumate, A. , Soto, D. C. , Sović, I. , Wood, J. M. D. , Zook, J. M. , Phillippy, A. M. , & Rhie, A. (2022). Chasing perfection: Validation and polishing strategies for telomere‐to‐telomere genome assemblies. Nature Methods, 19, 687–695. 10.1038/s41592-022-01440-3 PubMed DOI PMC

McGrath, J. M. , Funk, A. , Galewski, P. , Ou, S. , Townsend, B. , Davenport, K. , Daligault, H. , Johnson, S. , Lee, J. , Hastie, A. , Darracq, A. , Willems, G. , Barnes, S. , Liachko, I. , Sullivan, S. , Koren, S. , Phillippy, A. , Wang, J. , Liu, T. , … Dorn, K. M. (2023). A contiguous de novo genome assembly of sugar beet EL10 (Beta vulgaris L.). DNA Research, 30(1), dsac033. 10.1093/dnares/dsac033 PubMed DOI PMC

Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway computing environments workshop (GCE) (pp. 1–8). IEEE.

Minh, B. Q. , Schmidt, H. A. , Chernomor, O. , Schrempf, D. , Woodhams, M. D. , von Haeseler, A. , & Lanfear, R. (2020). IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC

Mirarab, S. , Reaz, R. , Bayzid, M. S. , Zimmermann, T. , Swenson, M. S. , & Warnow, T. (2014). ASTRAL: Genome‐scale coalescent‐based species tree estimation. Bioinformatics, 30, i541–i548. 10.1093/bioinformatics/btu462 PubMed DOI PMC

Mosyakin, S. L. , & Iamonico, D. (2017). Nomenclatural changes in Chenopodium (incl. Rhagodia) (Chenopodiaceae), with considerations on relationships of some Australian taxa and their possible Eurasian relatives. Nuytsia—The Journal of the Western Australian Herbarium, 28, 255–271. 10.58828/nuy00843 DOI

Navarro, C. , Abelenda, J. A. , Cruz‐Oró, E. , Cuéllar, C. A. , Tamaki, S. , Silva, J. , Shimamoto, K. , & Prat, S. (2011). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478, 119–122. 10.1038/nature10431 PubMed DOI

Nguyen, L.‐T. , Schmidt, H. A. , von Haeseler, A. , & Minh, B. Q. (2015). IQ‐TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum‐Likelihood Phylogenies. Molecular Biology and Evolution, 32, 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Nurk, S. , Walenz, B. P. , Rhie, A. , Vollger, M. R. , Logsdon, G. A. , Grothe, R. , Miga, K. H. , Eichler, E. E. , Phillippy, A. M. , & Koren, S. (2020). HiCanu: Accurate assembly of segmental duplications, satellites, and allelic variants from high‐fidelity long reads. Genome Research, 30, 1291–1305. 10.1101/gr.263566.120 PubMed DOI PMC

Oldenburg, D. J. , & Bendich, A. J. (2004). Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. Journal of Molecular Biology, 335, 953–970. 10.1016/j.jmb.2003.11.020 PubMed DOI

Orzechowska, M. , Majka, M. , Weiss‐Schneeweiss, H. , Kovařík, A. , Borowska‐Zuchowska, N. , & Kolano, B. (2018). Organization and evolution of two repetitive sequences, 18–24J and 12–13P, in the genome of Chenopodium (Amaranthaceae). Genome, 61, 643–652. 10.1139/gen-2018-0044 PubMed DOI

Palmer, J. D. (1983). Chloroplast DNA exists in two orientations. Nature, 301, 92–93. 10.1038/301092a0 DOI

Partap, T. , & Kapoor, P. (1985). The Himalayan grain chenopods. I. Distribution and ethnobotany. Agriculture, Ecosystems & Environment, 14, 185–199. 10.1016/0167-8809(85)90035-0 DOI

Patiranage, D. S. R. , Asare, E. , Maldonado‐Taipe, N. , Rey, E. , Emrani, N. , Tester, M. , & Jung, C. (2021). Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant, Cell & Environment, 44, 2565–2579. 10.1111/pce.14071 PubMed DOI

Peichel, C. L. , Sullivan, S. T. , Liachko, I. , & White, M. A. (2017). Improvement of the threespine stickleback genome using a Hi‐C‐based proximity‐guided assembly. Journal of Heredity, 108, 693–700. 10.1093/jhered/esx058 PubMed DOI PMC

Pin, P. A. , Benlloch, R. , Bonnet, D. , Wremerth‐Weich, E. , Kraft, T. , Gielen, J. J. L. , & Nilsson, O. (2010). An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 330, 1397–1400. 10.1126/science.1197004 PubMed DOI

Poonia, A. , & Upadhayay, A. (2015). Chenopodium album Linn: Review of nutritive value and biological properties. Journal of Food Science and Technology, 52, 3977–3985. 10.1007/s13197-014-1553-x PubMed DOI PMC

Raskina, O. , Barber, J. C. , Nevo, E. , & Belyayev, A. (2008). Repetitive DNA and chromosomal rearrangements: Speciation‐related events in plant genomes. Cytogenetic and Genome Research, 120, 351–357. 10.1159/000121084 PubMed DOI

Reijnders, M. J. M. F. , & Waterhouse, R. M. (2021). Summary visualizations of gene ontology terms with GO‐Figure! Frontiers in Bioinformatics, 1, 638255. 10.3389/fbinf.2021.638255 PubMed DOI PMC

Repo‐Carrasco, R. , Espinoza, C. , & Jacobsen, S.‐E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19, 179–189. 10.1081/FRI-120018884 DOI

Rey, E. , Abrouk, M. , Dufau, I. , Rodde, N. , Saber, N. , Cizkova, J. , Fiene, G. , Stanschewski, C. , Jarvis, D. , Jellen, E. , Maughan, P. , von Baer, I. , Troukhan, M. , Kravchuk, M. , Hribova, E. , Cauet, S. , Krattinger, S. , & Tester, M. (2024). Genome assembly of a diversity panel of Chenopodium quinoa . bioRxiv. 10.1101/2024.07.07.602379 PubMed DOI PMC

Rey, E. , Maughan, P. J. , Maumus, F. , Lewis, D. , Wilson, L. , Fuller, J. , Schmöckel, S. M. , Jellen, E. N. , Tester, M. , & Jarvis, D. E. (2023). A chromosome‐scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Communications Biology, 6, 1263. 10.1038/s42003-023-05613-4 PubMed DOI PMC

Romiguier, J. , & Roux, C. (2017). Analytical biases associated with GC content in molecular evolution. Frontiers in Genetics, 8, 16. 10.3389/fgene.2017.00016 PubMed DOI PMC

Russo, A. , Mayjonade, B. , Frei, D. , Potente, G. , Kellenberger, R. T. , Frachon, L. , Copetti, D. , Studer, B. , Frey, J. E. , Grossniklaus, U. , & Schlüter, P. M. (2022). Low‐input high‐molecular‐weight DNA extraction for long‐read sequencing from plants of diverse families. Frontiers in Plant Science, 13, 883897. 10.3389/fpls.2022.883897 PubMed DOI PMC

She, H. , Liu, Z. , Xu, Z. , Zhang, H. , Cheng, F. , Wu, J. , Wang, X. , & Qian, W. (2022). Comparative chloroplast genome analyses of cultivated spinach and two wild progenitors shed light on the phylogenetic relationships and variation. Scientific Reports, 12, 856. 10.1038/s41598-022-04918-4 PubMed DOI PMC

Shi, L. , Wu, Y. , & Sheen, J. (2018). TOR signaling in plants: Conservation and innovation. Development, 145(13), dev160887. 10.1242/dev.160887 PubMed DOI PMC

Silvestri, V. , & Gil, F. (2000). Alogamia en quinua. T asa en Mendoza (Argentina) (pp. 71–76). Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo.

Smit, A. F. A. , Hubley, R. , & Green, P. (2013–2015). RepeatMasker Open‐4.0 . https://www.repeatmasker.org/

Smith, B. D. , & Yarnell, R. A. (2009). Initial formation of an indigenous crop complex in eastern North America at 3800 B.P. Proceedings of the National Academy of Sciences, 106, 6561–6566. 10.1073/pnas.0901846106 PubMed DOI PMC

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30, 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Štorchová, H. (2020). The evolution of the FLOWERING LOCUS T‐Like (FTL) genes in the goosefoot subfamily Chenopodioideae . Evolutionary biology—A transdisciplinary approach (pp. 325–335). Springer International Publishing.

Tenaillon, M. I. , Hollister, J. D. , & Gaut, B. S. (2010). A triptych of the evolution of plant transposable elements. Trends in Plant Science, 15, 471–478. 10.1016/j.tplants.2010.05.003 PubMed DOI

Tillich, M. , Lehwark, P. , Pellizzer, T. , Ulbricht‐Jones, E. S. , Fischer, A. , Bock, R. , & Greiner, S. (2017). GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 45, W6–W11. 10.1093/nar/gkx391 PubMed DOI PMC

Tinker, N. A. , Wight, C. P. , Bekele, W. A. , Yan, W. , Jellen, E. N. , Renhuldt, N. T. , Sirijovski, N. , Lux, T. , Spannagl, M. , & Mascher, M. (2022). Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Communications Biology, 5, 474. 10.1038/s42003-022-03256-5 PubMed DOI PMC

Vaillancourt, B. , & Buell, C. R. (2019). High molecular weight DNA isolation method from diverse plant species for use with Oxford Nanopore sequencing . bioRxiv. 10.1101/783159 DOI

Vega‐Gálvez, A. , Miranda, M. , Vergara, J. , Uribe, E. , Puente, L. , & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90, 2541–2547. 10.1002/jsfa.4158 PubMed DOI

Vít, P. , Krak, K. , Trávníček, P. , Douda, J. , Lomonosova, M. N. , & Mandák, B. (2016). Genome size stability across Eurasian Chenopodium species (Amaranthaceae). Botanical Journal of the Linnean Society, 182(3), 637–649. Portico. 10.1111/boj.12474 DOI

Wang, B. , Hou, M. , Shi, J. , Ku, L. , Song, W. , Li, C. , Ning, Q. , Li, X. , Li, C. , Zhao, B. , Zhang, R. , Xu, H. , Bai, Z. , Xia, Z. , Wang, H. , Kong, D. , Wei, H. , Jing, Y. , Dai, Z. , … Wang, H. (2023). De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 55, 312–323. 10.1038/s41588-022-01283-w PubMed DOI

Wang, H. , Xu, D. , Wang, S. , Wang, A. , Lei, L. , Jiang, F. , Yang, B. , Yuan, L. , Chen, R. , Zhang, Y. , & Fan, W. (2023). Chromosome‐scale Amaranthus tricolor genome provides insights into the evolution of the genus Amaranthus and the mechanism of betalain biosynthesis. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 30(1), dsac050. 10.1093/dnares/dsac050 PubMed DOI PMC

Wang, T. , Duan, S. , Xu, C. , Wang, Y. , Zhang, X. , Xu, X. , Chen, L. , Han, Z. , & Wu, T. (2023). Pan‐genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits. Nature Communications, 14, 7377. 10.1038/s41467-023-43270-7 PubMed DOI PMC

Wilson, H. D. , & Heiser, C. B. (1979). The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttaliae Safford), domesticated chenopod of Mexico. American Journal of Botany, 66(2), 198–206. 10.2307/2442525 DOI

Wlodzimierz, P. , Hong, M. , & Henderson, I. R. (2023). TRASH: Tandem repeat annotation and structural hierarchy. Bioinformatics, 39(5), btad308. 10.1093/bioinformatics/btad308.[CrossRef] PubMed DOI PMC

Xu, H. , Xiang, N. , Du, W. , Zhang, J. , & Zhang, Y. (2022). Genetic variation and structure of complete chloroplast genome in alien monoecious and dioecious Amaranthus weeds. Scientific Reports, 12, 8255. 10.1038/s41598-022-11983-2 PubMed DOI PMC

Ye, J. , McGinnis, S. , & Madden, T. L. (2006). BLAST: Improvements for better sequence analysis. Nucleic Acids Research, 34, W6–W9. 10.1093/nar/gkl164 PubMed DOI PMC

Young, L. A. , Maughan, P. J. , Jarvis, D. E. , Hunt, S. P. , Warner, H. C. , Durrant, K. K. , Kohlert, T. , Curti, R. N. , Bertero, D. , Filippi, G. A. , Pospíšilíková, T. , Krak, K. , Mandák, B. , & Jellen, E. N. (2023). A chromosome‐scale reference of Chenopodium watsonii helps elucidate relationships within the North American A‐genome Chenopodium species and with quinoa. The Plant Genome, 16(3), e20349. 10.1002/tpg270010.20349 PubMed DOI

Zhang, Z. , Gou, X. , Xun, H. , Bian, Y. , Ma, X. , Li, J. , Li, N. , Gong, L. , Feldman, M. , Liu, B. , & Levy, A. A. (2020). Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proceedings of the National Academy of Sciences, 117, 14561–14571. 10.1073/pnas.2003505117 PubMed DOI PMC

Zhu, X. F. , Wan, J. X. , Wu, Q. , Zhao, X. S. , Zheng, S. J. , & Shen, R. F. (2017). PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana . Plant, Cell & Environment, 40, 1916–1925. 10.1111/pce.12999 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...