A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004581
TowArds Next 997 GENeration Crops
RVO67985939
Czech Science Foundation
20-20286S
Czech Science Foundation
1022158
National Institute of Food and Agriculture
PubMed
40018873
PubMed Central
PMC11869160
DOI
10.1002/tpg2.70010
Knihovny.cz E-zdroje
- MeSH
- Chenopodium * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- koncové repetice * MeSH
- molekulární evoluce * MeSH
- retroelementy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- retroelementy MeSH
The genus Chenopodium L. is characterized by its wide geographic distribution and ecological adaptability. Species such as quinoa (Chenopodium quinoa Willd.) have served as domesticated staple crops for centuries. Wild Chenopodium species exhibit diverse niche adaptations and are important genetic reservoirs for beneficial agronomic traits, including disease resistance and climate hardiness. To harness the potential of the wild taxa for crop improvement, we developed a Chenopodium pangenome through the assembly and comparative analyses of 12 Chenopodium species that encompass the eight known genome types (A-H). Six of the species are new chromosome-scale assemblies, and many are polyploids; thus, a total of 20 genomes were included in the pangenome analyses. We show that the genomes vary dramatically in size with the D genome being the smallest (∼370 Mb) and the B genome being the largest (∼700 Mb) and that genome size was correlated with independent expansions of the Copia and Gypsy LTR retrotransposon families, suggesting that transposable elements have played a critical role in the evolution of the Chenopodium genomes. We annotated a total of 33,457 pan-Chenopodium gene families, of which ∼65% were classified as shell (2% private). Phylogenetic analysis clarified the evolutionary relationships among the genome lineages, notably resolving the taxonomic placement of the F genome while highlighting the uniqueness of the A genome in the Western Hemisphere. These genomic resources are particularly important for understanding the secondary and tertiary gene pools available for the improvement of the domesticated chenopods while furthering our understanding of the evolution and complexity within the genus.
Department of Biology Brigham Young University Provo Utah USA
Department of Plant and Wildlife Sciences Brigham Young University Provo Utah USA
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Institute of Experimental Botany Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Abeyawardana, O. A. J. , Moravec, T. , Krüger, M. , Belz, C. , Gutierrez‐Larruscain, D. , Vondráková, Z. , Eliášová, K. , & Štorchová, H. (2023). The FLOWERING LOCUS T LIKE 2‐1 gene of Chenopodium triggers precocious flowering in Arabidopsis seedlings. Plant Signaling & Behavior, 18(1), 2239420. 10.1080/15592324.2023.2239420 PubMed DOI PMC
Abugoch James, L. E. (2009). Quinoa (Chenopodium quinoa Willd.). In Taylor S. L. (Ed.), Advances in food and nutrition research (pp. 1–31). Elsevier. 10.1016/s1043-4526(09)58001-1 PubMed DOI
Alandia, G. , Rodriguez, J. P. , Jacobsen, S.‐E. , Bazile, D. , & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429. 10.1016/j.gfs.2020.100429 DOI
Bajwa, A. A. , Zulfiqar, U. , Sadia, S. , Bhowmik, P. , & Chauhan, B. S. (2019). A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: Two troublesome agricultural and environmental weeds. Environmental Science and Pollution Research, 26, 5357–5371. 10.1007/s11356-018-04104-y PubMed DOI
Basantes‐Morales, E. R. , Alconada, M. M. , & Pantoja, J. L. (2019). Quinoa (Chenopodium quinoa Willd.) production in the Andean region: Challenges and potentials. Journal of Experimental Agriculture International, 36(6), 1–18. 10.9734/jeai/2019/v36i630251 DOI
Belyayev, A. , Jandová, M. , Josefiová, J. , Kalendar, R. , Mahelka, V. , Mandák, B. , & Krak, K. (2020). The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis”. PLoS ONE, 15, e0241206. 10.1371/journal.pone.0241206 PubMed DOI PMC
Belyayev, A. , Josefiová, J. , Jandová, M. , Kalendar, R. , Krak, K. , & Mandák, B. (2019). Natural history of a satellite DNA family: From the ancestral genome component to species‐specific sequences, concerted and non‐concerted evolution. International Journal of Molecular Sciences, 20, 1201. 10.3390/ijms20051201 PubMed DOI PMC
Belyayev, A. , Josefiová, J. , Jandová, M. , Mahelka, V. , Krak, K. , & Mandák, B. (2020). Transposons and satellite DNA: On the origin of the major satellite DNA family in the Chenopodium genome. Mobile DNA, 11, 20. 10.1186/s13100-020-00219-7 PubMed DOI PMC
Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27, 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC
Bhargava, A. , & Srivastava, S. (2019). Advantages and cost of participatory plant breeding. Participatory plant breeding: Concept and applications (pp. 87–107). Springer.
Bickhart, D. M. , Rosen, B. D. , Koren, S. , Sayre, B. L. , Hastie, A. R. , Chan, S. , Lee, J. , Lam, E. T. , Liachko, I. , Sullivan, S. T. , Burton, J. N. , Huson, H. J. , Nystrom, J. C. , Kelley, C. M. , Hutchison, J. L. , Zhou, Y. , Sun, J. , Crisà, A. , Ponce de León, F. A. , … Smith, T. P. L. (2017). Single‐molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 49, 643–650. 10.1038/ng.3802 PubMed DOI PMC
Bucchini, F. , Del Cortona, A. , Kreft, Ł. , Botzki, A. , Van Bel, M. , & Vandepoele, K. (2021). TRAPID 2.0: A web application for taxonomic and functional analysis of de novo transcriptomes. Nucleic Acids Research, 49, e101–e101. 10.1093/nar/gkab565 PubMed DOI PMC
Burton, J. N. , Adey, A. , Patwardhan, R. P. , Qiu, R. , Kitzman, J. O. , & Shendure, J. (2013). Chromosome‐scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31, 1119–1125. 10.1038/nbt.2727 PubMed DOI PMC
Chen, Y. , Zhang, Y. , Wang, A. Y. , Gao, M. , & Chong, Z. (2021). Accurate long‐read de novo assembly evaluation with Inspector. Genome Biology, 22, 312. 10.1186/s13059-021-02527-4 PubMed DOI PMC
Cheng, H. , Concepcion, G. T. , Feng, X. , Zhang, H. , & Li, H. (2021). Haplotype‐resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18, 170–175. 10.1038/s41592-020-01056-5 PubMed DOI PMC
Dakhili, S. , Abdolalizadeh, L. , Hosseini, S. M. , Shojaee‐Aliabadi, S. , & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food Chemistry, 299, 125161. 10.1016/j.foodchem.2019.125161 PubMed DOI
Danecek, P. , Bonfield, J. , Liddle, J. , Marshall, J. , Ohan, V. , Pollard, M. , Whitman, A. , Keane, T. , McCarthy, S. , Davies, R. , & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. 10.1093/gigascience/giab008 PubMed DOI PMC
Drabešová, J. , Černá, L. , Mašterová, H. , Koloušková, P. , Potocký, M. , & Štorchová, H. (2016). The evolution of the FT/TFL1 genes in Amaranthaceae and their expression patterns in the course of vegetative growth and flowering in Chenopodium rubrum . G3 Genes|Genomes|Genetics, 6, 3065–3076. 10.1534/g3.116.028639 PubMed DOI PMC
Du, J. , Tian, Z. , Hans, C. S. , Laten, H. M. , Cannon, S. B. , Jackson, S. A. , Shoemaker, R. C. , & Ma, J. (2010). Evolutionary conservation, diversity and specificity of LTR‐retrotransposons in flowering plants: Insights from genome‐wide analysis and multi‐specific comparison. The Plant Journal, 63, 584–598. 10.1111/j.1365-313X.2010.04263.x PubMed DOI
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Emms, D. M. , & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238. 10.1186/s13059-019-1832-y PubMed DOI PMC
Flynn, J. M. , Hubley, R. , Goubert, C. , Rosen, J. , Clark, A. G. , Feschotte, C. , & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 117, 9451–9457. 10.1073/pnas.1921046117 PubMed DOI PMC
Gabriel, L. , Brůna, T. , Hoff, K. J. , Ebel, M. , Lomsadze, A. , Borodovsky, M. , & Stanke, M. (2024). BRAKER3: Fully automated genome annotation using RNA‐seq and protein evidence with GeneMark‐ETP, AUGUSTUS and TSEBRA . 10.1101/2023.06.10.544449 PubMed DOI PMC
Galindo‐González, L. , Mhiri, C. , Deyholos, M. K. , & Grandbastien, M.‐A. (2017). LTR‐retrotransposons in plants: Engines of evolution. Gene, 626, 14–25. 10.1016/j.gene.2017.04.051 PubMed DOI
Gandarillas, H. , Alandia, S. , Cardozo, A. , & Mujica, A. (1979). "Mejoramiento genético'' in Qinua y Kaniwa cultivos Andinos. Instituto Interamericano de Ciencias Agrícolas.
Garrido‐Ramos, M. A. (2017). Satellite DNA: An evolving topic. Genes, 8(9), 230. 10.3390/genes8090230 PubMed DOI PMC
Gnerre, S. , MacCallum, I. , Przybylski, D. , Ribeiro, F. J. , Burton, J. N. , Walker, B. J. , Sharpe, T. , Hall, G. , Shea, T. P. , Sykes, S. , Berlin, A. M. , Aird, D. , Costello, M. , Daza, R. , Williams, L. , Nicol, R. , Gnirke, A. , Nusbaum, C. , Lander, E. S. , & Jaffe, D. B. (2011). High‐quality draft assemblies of mammalian genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences, 108, 1513–1518. 10.1073/pnas.1017351108 PubMed DOI PMC
Gutierrez‐Larruscain, D. , Krüger, M. , Abeyawardana, O. A. J. , Belz, C. , Dobrev, P. I. , Vaňková, R. , Eliášová, K. , Vondráková, Z. , Juříček, M. , & Štorchová, H. (2022). The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459. Plant Science, 320, 111279. 10.1016/j.plantsci.2022.111279 PubMed DOI
Heitkam, T. , Weber, B. , Walter, I. , Liedtke, S. , Ost, C. , & Schmidt, T. (2020). Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. The Plant Journal, 103, 32–52. 10.1111/tpj.14705 PubMed DOI
Hirsch, C. N. , Foerster, J. M. , Johnson, J. M. , Sekhon, R. S. , Muttoni, G. , Vaillancourt, B. , Peñagaricano, F. , Lindquist, E. , Pedraza, M. A. , Barry, K. , de Leon, N. , Kaeppler, S. M. , & Buell, C. R. (2014). Insights into the maize pan‐genome and pan‐transcriptome. The Plant Cell, 26, 121–135. 10.1105/tpc.113.119982 PubMed DOI PMC
Huang, N. , & Li, H. (2023). Compleasm: A faster and more accurate reimplementation of BUSCO. Bioinformatics, 39, btad595. 10.1093/bioinformatics/btad595 PubMed DOI PMC
Jarvis, D. E. , Ho, Y. S. , Lightfoot, D. J. , Schmöckel, S. M. , Li, B. , Borm, T. J. A. , Ohyanagi, H. , Mineta, K. , Michell, C. T. , Saber, N. , Kharbatia, N. M. , Rupper, R. R. , Sharp, A. R. , Dally, N. , Boughton, B. A. , Woo, Y. H. , Gao, G. , Schijlen, E. G. W. M. , Guo, X. , … Tester, M. (2017). The genome of Chenopodium quinoa . Nature, 542, 307–312. 10.1038/nature21370 PubMed DOI
Jarvis, D. E. , Sproul, J. S. , Navarro‐Domínguez, B. , Krak, K. , Jaggi, K. , Huang, Y.‐F. , Huang, T.‐Y. , Lin, T. C. , Jellen, E. N. , & Maughan, P. J. (2022). Chromosome‐scale genome assembly of the hexaploid Taiwanese goosefoot “Djulis” (Chenopodium formosanum). Genome Biology and Evolution, 14, evac120. 10.1093/gbe/evac120 PubMed DOI PMC
Jayakodi, M. , Padmarasu, S. , Haberer, G. , Bonthala, V. S. , Gundlach, H. , Monat, C. , Lux, T. , Kamal, N. , Lang, D. , Himmelbach, A. , Ens, J. , Zhang, X.‐Q. , Angessa, T. T. , Zhou, G. , Tan, C. , Hill, C. , Wang, P. , Schreiber, M. , Boston, L. B. , … Stein, N. (2020). The barley pan‐genome reveals the hidden legacy of mutation breeding. Nature, 588, 284–289. 10.1038/s41586-020-2947-8 PubMed DOI PMC
Jin, J.‐J. , Yu, W.‐B. , Yang, J.‐B. , Song, Y. , dePamphilis, C. W. , Yi, T.‐S. , & Li, D.‐Z. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241. 10.1186/s13059-020-02154-5 PubMed DOI PMC
Jones, P. , Binns, D. , Chang, H.‐Y. , Fraser, M. , Li, W. , McAnulla, C. , McWilliam, H. , Maslen, J. , Mitchell, A. , Nuka, G. , Pesseat, S. , Quinn, A. F. , Sangrador‐Vegas, A. , Scheremetjew, M. , Yong, S.‐Y. , Lopez, R. , & Hunter, S. (2014). InterProScan 5: Genome‐scale protein function classification. Bioinformatics (Oxford, England), 30, 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC
Kalyaanamoorthy, S. , Minh, B. Q. , Wong, T. K. F. , von Haeseler, A. , & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Kardailsky, I. , Shukla, V. K. , Ahn, J. H. , Dagenais, N. , Christensen, S. K. , Nguyen, J. T. , Chory, J. , Harrison, M. J. , & Weigel, D. (1999). Activation tagging of the floral inducer FT . Science, 286, 1962–1965. 10.1126/science.286.5446.1962 PubMed DOI
Katoh, K. , & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kistler, L. , & Shapiro, B. (2011). Ancient DNA confirms a local origin of domesticated chenopod in eastern North America. Journal of Archaeological Science, 38, 3549–3554. 10.1016/j.jas.2011.08.023 DOI
Kolano, B. , Gardunia, B. W. , Michalska, M. , Bonifacio, A. , Fairbanks, D. , Maughan, P. J. , Coleman, C. E. , Stevens, M. R. , Jellen, E. N. , & Maluszynska, J. (2011). Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome. Genome, 54, 710–717. 10.1139/g11-035 PubMed DOI
Koprivova, A. , Schuck, S. , Jacoby, R. P. , Klinkhammer, I. , Welter, B. , Leson, L. , Martyn, A. , Nauen, J. , Grabenhorst, N. , Mandelkow, J. F. , Zuccaro, A. , Zeier, J. , & Kopriva, S. (2019). Root‐specific camalexin biosynthesis controls the plant growth‐promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences, 116, 15735–15744. 10.1073/pnas.1818604116 PubMed DOI PMC
Koren, S. , Walenz, B. P. , Berlin, K. , Miller, J. R. , Bergman, N. H. , & Phillippy, A. M. (2017). Canu: Scalable and accurate long‐read assembly via adaptive k‐mer weighting and repeat separation. Genome Research, 27, 722–736. 10.1101/gr.215087.116 PubMed DOI PMC
Krak, K. , Vít, P. , Belyayev, A. , Douda, J. , Hreusová, L. , & Mandák, B. (2016). Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): A molecular and cytogenetic insight. PLoS ONE, 11, e0161063. 10.1371/journal.pone.0161063 PubMed DOI PMC
Kursel, L. E. , & Malik, H. S. (2016). Centromeres. Current Biology, 26, R487–R490. 10.1016/j.cub.2016.05.031 PubMed DOI
Kuznetsov, D. , Tegenfeldt, F. , Manni, M. , Seppey, M. , Berkeley, M. , Kriventseva, E. V. , & Zdobnov, E. M. (2023). OrthoDB v11: Annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Research, 51, D445–D451. 10.1093/nar/gkac998 PubMed DOI PMC
Laetsch, D. R. , & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6, 1287. 10.12688/f1000research.12232.1 DOI
Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094–3100. 10.1093/bioinformatics/bty191 PubMed DOI PMC
Li, H. , & Durbin, R. (2010). Fast and accurate long‐read alignment with Burrows–Wheeler transform. Bioinformatics, 26, 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Li, W. , & Godzik, A. (2006). Cd‐hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659. 10.1093/bioinformatics/btl158 PubMed DOI
Li, Y. , Zhou, G. , Ma, J. , Jiang, W. , Jin, L. , Zhang, Z. , Guo, Y. , Zhang, J. , Sui, Y. , Zheng, L. , Zhang, S. , Zuo, Q. , Shi, X. , Li, Y. , Zhang, W. , Hu, Y. , Kong, G. , Hong, H. , Tan, B. , … Qiu, L. (2014). De novo assembly of soybean wild relatives for pan‐genome analysis of diversity and agronomic traits. Nature Biotechnology, 32, 1045–1052. 10.1038/nbt.2979 PubMed DOI
Lovell, J. T. , Sreedasyam, A. , Schranz, M. E. , Wilson, M. , Carlson, J. W. , Harkess, A. , Emms, D. , Goodstein, D. M. , & Schmutz, J. (2022). GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife, 11, e78526. 10.7554/eLife.78526 PubMed DOI PMC
Ludwig, C. D. , Maughan, P. J. , Jellen, E. N. , & Davis, T. M. (2025). The genome of Chenopodium ficifolium: Developing genetic resources and a diploid model system for allotetraploid quinoa. BioRxiv. 10.1101/2025.01.17.633571 DOI
Ma, J. , & Bennetzen, J. L. (2004). Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 12404–12410. 10.1073/pnas.0403715101 PubMed DOI PMC
Madlung, A. , & Wendel, J. F. (2013). Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenetic and Genome Research, 140, 270–285. 10.1159/000351430 PubMed DOI
Mandák, B. , Krak, K. , Vít, P. , Pavlíková, Z. , Lomonosova, M. N. , Habibi, F. , Wang, L. , Jellen, E. N. , & Douda, J. (2016). How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics, 23, 18–32.
Mandák, B. , Krak, K. , Vít, P. , Lomonosova, M. N. , Belyayev, A. , Habibi, F. , Wang, L. , Douda, J. , & Štorchová, H. (2018). Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution, 129, 189–201. 10.1016/j.ympev.2018.08.016 PubMed DOI
Mandák, B. , Trávníček, P. , Paštová, L. , & Kořínková, D. (2012). Is hybridization involved in the evolution of the Chenopodium album aggregate? An analysis based on chromosome counts and genome size estimation. Flora—Morphology, Distribution, Functional Ecology of Plants, 207, 530–540. 10.1016/j.flora.2012.03.010 DOI
Mangelson, H. , Jarvis, D. E. , Mollinedo, P. , Rollano‐Penaloza, O. M. , Palma‐Encinas, V. D. , Gomez‐Pando, L. R. , Jellen, E. N. , & Maughan, P. J. (2019). The genome of Chenopodium pallidicaule: An emerging Andean super grain. Applications in Plant Sciences, 7, e11300. 10.1002/aps3.11300 PubMed DOI PMC
Manni, M. , Berkeley, M. R. , Seppey, M. , Simão, F. A. , & Zdobnov, E. M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38, 4647–4654. 10.1093/molbev/msab199 PubMed DOI PMC
Maughan, P. J. , Chaney, L. , Lightfoot, D. J. , Cox, B. J. , Tester, M. , Jellen, E. N. , & Jarvis, D. E. (2019). Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Scientific Reports, 9, 185. 10.1038/s41598-018-36693-6 PubMed DOI PMC
Maughan, P. J. , Jarvis, D. E. , de la Cruz‐Torres, E. , Jaggi, K. E. , Warner, H. C. , Marcheschi, A. K. , Bertero, H. D. , Gomez‐Pando, L. , Fuentes, F. , Mayta‐Anco, M. E. , Curti, R. , Rey, E. , Tester, M. , & Jellen, E. N. (2024). North American pitseed goosefoot (Chenopodium berlandieri) is a genetic resource to improve Andean quinoa (C. quinoa). Scientific Reports, 14(1), 12345. 10.1038/s41598-024-63106-8 PubMed DOI PMC
Maughan, P. J. , Kolano, B. A. , Maluszynska, J. , Coles, N. D. , Bonifacio, A. , Rojas, J. , Coleman, C. E. , Stevens, M. R. , Fairbanks, D. J. , Parkinson, S. E. , & Jellen, E. N. (2006). Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri . Genome, 49, 825–839. 10.1139/g06-033 PubMed DOI
McCartney, A. M. , Shafin, K. , Alonge, M. , Bzikadze, A. V. , Formenti, G. , Fungtammasan, A. , Howe, K. , Jain, C. , Koren, S. , Logsdon, G. A. , Miga, K. H. , Mikheenko, A. , Paten, B. , Shumate, A. , Soto, D. C. , Sović, I. , Wood, J. M. D. , Zook, J. M. , Phillippy, A. M. , & Rhie, A. (2022). Chasing perfection: Validation and polishing strategies for telomere‐to‐telomere genome assemblies. Nature Methods, 19, 687–695. 10.1038/s41592-022-01440-3 PubMed DOI PMC
McGrath, J. M. , Funk, A. , Galewski, P. , Ou, S. , Townsend, B. , Davenport, K. , Daligault, H. , Johnson, S. , Lee, J. , Hastie, A. , Darracq, A. , Willems, G. , Barnes, S. , Liachko, I. , Sullivan, S. , Koren, S. , Phillippy, A. , Wang, J. , Liu, T. , … Dorn, K. M. (2023). A contiguous de novo genome assembly of sugar beet EL10 (Beta vulgaris L.). DNA Research, 30(1), dsac033. 10.1093/dnares/dsac033 PubMed DOI PMC
Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway computing environments workshop (GCE) (pp. 1–8). IEEE.
Minh, B. Q. , Schmidt, H. A. , Chernomor, O. , Schrempf, D. , Woodhams, M. D. , von Haeseler, A. , & Lanfear, R. (2020). IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC
Mirarab, S. , Reaz, R. , Bayzid, M. S. , Zimmermann, T. , Swenson, M. S. , & Warnow, T. (2014). ASTRAL: Genome‐scale coalescent‐based species tree estimation. Bioinformatics, 30, i541–i548. 10.1093/bioinformatics/btu462 PubMed DOI PMC
Mosyakin, S. L. , & Iamonico, D. (2017). Nomenclatural changes in Chenopodium (incl. Rhagodia) (Chenopodiaceae), with considerations on relationships of some Australian taxa and their possible Eurasian relatives. Nuytsia—The Journal of the Western Australian Herbarium, 28, 255–271. 10.58828/nuy00843 DOI
Navarro, C. , Abelenda, J. A. , Cruz‐Oró, E. , Cuéllar, C. A. , Tamaki, S. , Silva, J. , Shimamoto, K. , & Prat, S. (2011). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478, 119–122. 10.1038/nature10431 PubMed DOI
Nguyen, L.‐T. , Schmidt, H. A. , von Haeseler, A. , & Minh, B. Q. (2015). IQ‐TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum‐Likelihood Phylogenies. Molecular Biology and Evolution, 32, 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Nurk, S. , Walenz, B. P. , Rhie, A. , Vollger, M. R. , Logsdon, G. A. , Grothe, R. , Miga, K. H. , Eichler, E. E. , Phillippy, A. M. , & Koren, S. (2020). HiCanu: Accurate assembly of segmental duplications, satellites, and allelic variants from high‐fidelity long reads. Genome Research, 30, 1291–1305. 10.1101/gr.263566.120 PubMed DOI PMC
Oldenburg, D. J. , & Bendich, A. J. (2004). Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. Journal of Molecular Biology, 335, 953–970. 10.1016/j.jmb.2003.11.020 PubMed DOI
Orzechowska, M. , Majka, M. , Weiss‐Schneeweiss, H. , Kovařík, A. , Borowska‐Zuchowska, N. , & Kolano, B. (2018). Organization and evolution of two repetitive sequences, 18–24J and 12–13P, in the genome of Chenopodium (Amaranthaceae). Genome, 61, 643–652. 10.1139/gen-2018-0044 PubMed DOI
Palmer, J. D. (1983). Chloroplast DNA exists in two orientations. Nature, 301, 92–93. 10.1038/301092a0 DOI
Partap, T. , & Kapoor, P. (1985). The Himalayan grain chenopods. I. Distribution and ethnobotany. Agriculture, Ecosystems & Environment, 14, 185–199. 10.1016/0167-8809(85)90035-0 DOI
Patiranage, D. S. R. , Asare, E. , Maldonado‐Taipe, N. , Rey, E. , Emrani, N. , Tester, M. , & Jung, C. (2021). Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant, Cell & Environment, 44, 2565–2579. 10.1111/pce.14071 PubMed DOI
Peichel, C. L. , Sullivan, S. T. , Liachko, I. , & White, M. A. (2017). Improvement of the threespine stickleback genome using a Hi‐C‐based proximity‐guided assembly. Journal of Heredity, 108, 693–700. 10.1093/jhered/esx058 PubMed DOI PMC
Pin, P. A. , Benlloch, R. , Bonnet, D. , Wremerth‐Weich, E. , Kraft, T. , Gielen, J. J. L. , & Nilsson, O. (2010). An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 330, 1397–1400. 10.1126/science.1197004 PubMed DOI
Poonia, A. , & Upadhayay, A. (2015). Chenopodium album Linn: Review of nutritive value and biological properties. Journal of Food Science and Technology, 52, 3977–3985. 10.1007/s13197-014-1553-x PubMed DOI PMC
Raskina, O. , Barber, J. C. , Nevo, E. , & Belyayev, A. (2008). Repetitive DNA and chromosomal rearrangements: Speciation‐related events in plant genomes. Cytogenetic and Genome Research, 120, 351–357. 10.1159/000121084 PubMed DOI
Reijnders, M. J. M. F. , & Waterhouse, R. M. (2021). Summary visualizations of gene ontology terms with GO‐Figure! Frontiers in Bioinformatics, 1, 638255. 10.3389/fbinf.2021.638255 PubMed DOI PMC
Repo‐Carrasco, R. , Espinoza, C. , & Jacobsen, S.‐E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19, 179–189. 10.1081/FRI-120018884 DOI
Rey, E. , Abrouk, M. , Dufau, I. , Rodde, N. , Saber, N. , Cizkova, J. , Fiene, G. , Stanschewski, C. , Jarvis, D. , Jellen, E. , Maughan, P. , von Baer, I. , Troukhan, M. , Kravchuk, M. , Hribova, E. , Cauet, S. , Krattinger, S. , & Tester, M. (2024). Genome assembly of a diversity panel of Chenopodium quinoa . bioRxiv. 10.1101/2024.07.07.602379 PubMed DOI PMC
Rey, E. , Maughan, P. J. , Maumus, F. , Lewis, D. , Wilson, L. , Fuller, J. , Schmöckel, S. M. , Jellen, E. N. , Tester, M. , & Jarvis, D. E. (2023). A chromosome‐scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Communications Biology, 6, 1263. 10.1038/s42003-023-05613-4 PubMed DOI PMC
Romiguier, J. , & Roux, C. (2017). Analytical biases associated with GC content in molecular evolution. Frontiers in Genetics, 8, 16. 10.3389/fgene.2017.00016 PubMed DOI PMC
Russo, A. , Mayjonade, B. , Frei, D. , Potente, G. , Kellenberger, R. T. , Frachon, L. , Copetti, D. , Studer, B. , Frey, J. E. , Grossniklaus, U. , & Schlüter, P. M. (2022). Low‐input high‐molecular‐weight DNA extraction for long‐read sequencing from plants of diverse families. Frontiers in Plant Science, 13, 883897. 10.3389/fpls.2022.883897 PubMed DOI PMC
She, H. , Liu, Z. , Xu, Z. , Zhang, H. , Cheng, F. , Wu, J. , Wang, X. , & Qian, W. (2022). Comparative chloroplast genome analyses of cultivated spinach and two wild progenitors shed light on the phylogenetic relationships and variation. Scientific Reports, 12, 856. 10.1038/s41598-022-04918-4 PubMed DOI PMC
Shi, L. , Wu, Y. , & Sheen, J. (2018). TOR signaling in plants: Conservation and innovation. Development, 145(13), dev160887. 10.1242/dev.160887 PubMed DOI PMC
Silvestri, V. , & Gil, F. (2000). Alogamia en quinua. T asa en Mendoza (Argentina) (pp. 71–76). Revista de la Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo.
Smit, A. F. A. , Hubley, R. , & Green, P. (2013–2015). RepeatMasker Open‐4.0 . https://www.repeatmasker.org/
Smith, B. D. , & Yarnell, R. A. (2009). Initial formation of an indigenous crop complex in eastern North America at 3800 B.P. Proceedings of the National Academy of Sciences, 106, 6561–6566. 10.1073/pnas.0901846106 PubMed DOI PMC
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30, 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Štorchová, H. (2020). The evolution of the FLOWERING LOCUS T‐Like (FTL) genes in the goosefoot subfamily Chenopodioideae . Evolutionary biology—A transdisciplinary approach (pp. 325–335). Springer International Publishing.
Tenaillon, M. I. , Hollister, J. D. , & Gaut, B. S. (2010). A triptych of the evolution of plant transposable elements. Trends in Plant Science, 15, 471–478. 10.1016/j.tplants.2010.05.003 PubMed DOI
Tillich, M. , Lehwark, P. , Pellizzer, T. , Ulbricht‐Jones, E. S. , Fischer, A. , Bock, R. , & Greiner, S. (2017). GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 45, W6–W11. 10.1093/nar/gkx391 PubMed DOI PMC
Tinker, N. A. , Wight, C. P. , Bekele, W. A. , Yan, W. , Jellen, E. N. , Renhuldt, N. T. , Sirijovski, N. , Lux, T. , Spannagl, M. , & Mascher, M. (2022). Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Communications Biology, 5, 474. 10.1038/s42003-022-03256-5 PubMed DOI PMC
Vaillancourt, B. , & Buell, C. R. (2019). High molecular weight DNA isolation method from diverse plant species for use with Oxford Nanopore sequencing . bioRxiv. 10.1101/783159 DOI
Vega‐Gálvez, A. , Miranda, M. , Vergara, J. , Uribe, E. , Puente, L. , & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90, 2541–2547. 10.1002/jsfa.4158 PubMed DOI
Vít, P. , Krak, K. , Trávníček, P. , Douda, J. , Lomonosova, M. N. , & Mandák, B. (2016). Genome size stability across Eurasian Chenopodium species (Amaranthaceae). Botanical Journal of the Linnean Society, 182(3), 637–649. Portico. 10.1111/boj.12474 DOI
Wang, B. , Hou, M. , Shi, J. , Ku, L. , Song, W. , Li, C. , Ning, Q. , Li, X. , Li, C. , Zhao, B. , Zhang, R. , Xu, H. , Bai, Z. , Xia, Z. , Wang, H. , Kong, D. , Wei, H. , Jing, Y. , Dai, Z. , … Wang, H. (2023). De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 55, 312–323. 10.1038/s41588-022-01283-w PubMed DOI
Wang, H. , Xu, D. , Wang, S. , Wang, A. , Lei, L. , Jiang, F. , Yang, B. , Yuan, L. , Chen, R. , Zhang, Y. , & Fan, W. (2023). Chromosome‐scale Amaranthus tricolor genome provides insights into the evolution of the genus Amaranthus and the mechanism of betalain biosynthesis. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 30(1), dsac050. 10.1093/dnares/dsac050 PubMed DOI PMC
Wang, T. , Duan, S. , Xu, C. , Wang, Y. , Zhang, X. , Xu, X. , Chen, L. , Han, Z. , & Wu, T. (2023). Pan‐genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits. Nature Communications, 14, 7377. 10.1038/s41467-023-43270-7 PubMed DOI PMC
Wilson, H. D. , & Heiser, C. B. (1979). The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttaliae Safford), domesticated chenopod of Mexico. American Journal of Botany, 66(2), 198–206. 10.2307/2442525 DOI
Wlodzimierz, P. , Hong, M. , & Henderson, I. R. (2023). TRASH: Tandem repeat annotation and structural hierarchy. Bioinformatics, 39(5), btad308. 10.1093/bioinformatics/btad308.[CrossRef] PubMed DOI PMC
Xu, H. , Xiang, N. , Du, W. , Zhang, J. , & Zhang, Y. (2022). Genetic variation and structure of complete chloroplast genome in alien monoecious and dioecious Amaranthus weeds. Scientific Reports, 12, 8255. 10.1038/s41598-022-11983-2 PubMed DOI PMC
Ye, J. , McGinnis, S. , & Madden, T. L. (2006). BLAST: Improvements for better sequence analysis. Nucleic Acids Research, 34, W6–W9. 10.1093/nar/gkl164 PubMed DOI PMC
Young, L. A. , Maughan, P. J. , Jarvis, D. E. , Hunt, S. P. , Warner, H. C. , Durrant, K. K. , Kohlert, T. , Curti, R. N. , Bertero, D. , Filippi, G. A. , Pospíšilíková, T. , Krak, K. , Mandák, B. , & Jellen, E. N. (2023). A chromosome‐scale reference of Chenopodium watsonii helps elucidate relationships within the North American A‐genome Chenopodium species and with quinoa. The Plant Genome, 16(3), e20349. 10.1002/tpg270010.20349 PubMed DOI
Zhang, Z. , Gou, X. , Xun, H. , Bian, Y. , Ma, X. , Li, J. , Li, N. , Gong, L. , Feldman, M. , Liu, B. , & Levy, A. A. (2020). Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proceedings of the National Academy of Sciences, 117, 14561–14571. 10.1073/pnas.2003505117 PubMed DOI PMC
Zhu, X. F. , Wan, J. X. , Wu, Q. , Zhao, X. S. , Zheng, S. J. , & Shen, R. F. (2017). PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana . Plant, Cell & Environment, 40, 1916–1925. 10.1111/pce.12999 PubMed DOI