The FLOWERING LOCUS T LIKE 2-1 gene of Chenopodium triggers precocious flowering in Arabidopsis seedlings

. 2023 Dec 31 ; 18 (1) : 2239420.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37503632

The FLOWERING LOCUS T (FT) gene is the essential integrator of flowering regulatory pathways in angiosperms. The paralogs of the FT gene may perform antagonistic functions, as exemplified by BvFT1, that suppresses flowering in Beta vulgaris, unlike the paralogous activator BvFT2. The roles of FT genes in other amaranths were less investigated. Here, we transformed Arabidopsis thaliana with the FLOWERING LOCUS T like (FTL) genes of Chenopodium ficifolium and found that both CfFTL1 and CfFTL2-1 accelerated flowering, despite having been the homologs of the Beta vulgaris floral promoter and suppressor, respectively. The floral promotive effect of CfFTL2-1 was so strong that it caused lethality when overexpressed under the 35S promoter. CfFTL2-1 placed in an inducible cassette accelerated flowering after induction with methoxyphenozide. The spontaneous induction of CfFTL2-1 led to precocious flowering in some primary transformants even without chemical induction. The CqFT2-1 homolog from Chenopodium quinoa had the same impact on viability and flowering as CfFTL2-1 when transferred to A. thaliana. After the FTL gene duplication in Amaranthaceae, the FTL1 copy maintained the role of floral activator. The second copy FTL2 underwent subsequent duplication and functional diversification, which enabled it to control the onset of flowering in amaranths to adapt to variable environments.

The FLOWERINGLOCUS T like 2–1 gene of Chenopodium ficifolium andChenopodium quinoa acts as a strong activator of flowering in Arabidopsis, triggering flowering at cotyledon stage and causing lethality when overexpressed.

Zobrazit více v PubMed

Andres F, Coupland G.. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012;13(9):627–10. doi:10.1038/nrg3291. PubMed DOI

Hyun Y, Richter R, Vincent C, Martínez-Gallegos R, Porri A, Coupland G. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell. 2016;37(3):254–266. doi:10.1016/j.devcel.2016.04.001. PubMed DOI

Riboni M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPRESSOR of OVEREXPRESSION of CONSTANTS1. Plant Phys. 2013;162(3):1706–1719. doi:10.1104/pp.113.217729. PubMed DOI PMC

Chailakhyan MK. About the mechanism of the photoperiodic response. Dokl Akad Nauk SSSR. 1936;1:85–89.

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316(5827):1030–1033. doi:10.1126/science.1141752. PubMed DOI

Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Curr Biol. 2007;17(12):1050–1054. doi:10.1016/j.cub.2007.05.008. PubMed DOI

Hayama R, Agashe B, Luley E, King R, Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell. 2007;19(10):2988–3000. doi:10.1105/tpc.107.052480. PubMed DOI PMC

Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007;316(5827):1033–1036. doi:10.1126/science.1141753. PubMed DOI

Mathieu J, Warthmann N, Küttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol. 2007;17(12):1055–1060. doi:10.1016/j.cub.2007.05.009. PubMed DOI

Pin P, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell & Environ. 2012;35(10):1742–1755. doi:10.1111/j.1365-3040.2012.02558.x. PubMed DOI

Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O. An antagonistic pair of FT Homologs mediates the control of flowering time in sugar beet. Science. 2010;330(6009):1397–1400. doi:10.1126/science.1197004. PubMed DOI

Drabešová J, Černá L, Mašterová H, Koloušková P, Potocký M, Štorchová H. The Evolution of the FT/TFL1 Genes in Amaranthaceae and their expression patterns in the course of vegetative growth and flowering in Chenopodium rubrum. G3-Genes Genomes Genet. 2016;6(10):3065–3076. doi:10.1534/g3.116.028639. PubMed DOI PMC

Cháb D, Kolář J, Olson MS, Štorchová H. Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta. 2008;228(6):929–940. doi:10.1007/s00425-008-0792-3. PubMed DOI

Drabešová J, Cháb D, Kolář J, Haškovcová K, Štorchová H. A dark–light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. J Exp Bot. 2014;65(8):2137–2146. doi:10.1093/jxb/eru073. PubMed DOI PMC

Štorchová H. Flowering in Chenopodium and related amaranths. In: Schmöckel S, editor. The Quinoa Genome. Cham, CH:Springer International Publishing; 2021. pp. 169–177. doi:10.1007/978-3-030-65237-1_10. DOI

Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, et al. The genome of Chenopodium quinoa. Nature. 2017;542(7641):307–312. doi:10.1038/nature21370. PubMed DOI

Patiranage DSR, Asare E, Maldonado-Taipe N, Rey E, Emrani N, Tester M, Jung C. Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant, Cell & Environ. 2021;44(8):2565–2579. doi:10.1111/pce.14071. PubMed DOI

Štorchová H, Hubáčková H, Abeyawardana OAJ, Walterová J, Vondráková Z, Eliášová K, Mandák B. Chenopodium ficifolium flowers under long days without upregulation of FLOWERING LOCUS T (FT) homologs. Planta. 2019;250(6):2111–2125. doi:10.1007/s00425-019-03285-1. PubMed DOI

Štorchová H. The evolution of the FLOWERING LOCUS T-Like (FTL) genes in the goosefoot subfamily Chenopodioideae. In: Pontarotti P, editor. Evolutionary biology - a transdisciplinary approach. Cham:Springer International Publishing; 2020.pp. 325–335. doi:10.1007/978-3-030-57246-4_13. DOI

Štorchová H, Drabešová J, Cháb D, Kolář J, Jellen EN. The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genet Resour Crop Evol. 2015;62(6):913–925. doi:10.1007/s10722-014-0200-8. DOI

Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN. Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. Am J Bot. 2015;102(4):533–543. doi:10.3732/ajb.1400344. PubMed DOI

Sarrión-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-Del-Carmen A, Granell A, Orzaez D, Peccoud J. GoldenBraid: An iterative cloning system for standardized assembly of reusable genetic modules. PLoS One. 2011;6(7):e21622. doi:10.1371/journal.pone.0021622. PubMed DOI PMC

Semenyuk EG, Schmidt MA, Beachy RN, Moravec T, Woodford-Thomas T. Adaptation of an ecdysone-based genetic switch for transgene expression in soybean seeds. Transgenic Res. 2010;19(6):987–999. doi:10.1007/s11248-010-9377-6. PubMed DOI

Zhang KW, Wang JM, Yang GD, Guo XQ, Wen FJ, Cui DC, Zheng CC. Isolation of a strong matrix attachment region (MAR) and identification of its function in vitro and in vivo. Chinese Sci Bull. 2002;47(23):1999–2005. doi:10.1360/02tb9434. DOI

Allen GC, Hall G Jr, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell. 1996;8:899–913. doi:10.1105/tpc.8.5.899. PubMed DOI PMC

Dušek J, Plchová H, Čerovská N, Poborilova Z, Navratil O, Kratochvilova K, Gunter C, Jacobs R, Hitzeroth II, Rybicki EP, et al. Extended set of goldenbraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front Plant Sci. 2020;11:522059. doi:10.3389/fpls.2020.522059. PubMed DOI PMC

Hood EE, Gelvin SB, Melchers LS, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993;2(4):208–218. doi:10.1007/BF01977351. DOI

An G. Binary Ti-Vectors for plant transformation and promoter analysis. Methods Enzymol. 1987;153:292–305.

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Libus J, Štorchová H. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques. 2006;41(2):156–164. doi:10.2144/000112232. PubMed DOI

Alvarez M, Bleich A, Donohue K. Genotypic variation in the persistence of transgenerational response to seasonal cues. Evolution. 2020;74(10):2423–2424. doi:10.1111/evo.14367. PubMed DOI

Sun H, Jia Z, Cao D, Jiang BJ, Wu CX, Hou WS, Liu YK, Fei ZH, Zhao DZ, Han TF, et al. GmFt2a, a Soybean Homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One. 2011;6(12):e29238. doi:10.1371/journal.pone.0029238. PubMed DOI PMC

Subedi M, Neff E, Davis TM. Developing Chenopodium ficifolium as a potential B genome diploid model system for genetic characterization and improvement of allotetraploid quinoa (Chenopodium quinoa). BMC Plant Biol. 2021;21(1):490. doi:10.1186/s12870-021-03270-5. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium

. 2025 Mar ; 18 (1) : e70010.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...