The Evolution of the FT/TFL1 Genes in Amaranthaceae and Their Expression Patterns in the Course of Vegetative Growth and Flowering in Chenopodium rubrum
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27473314
PubMed Central
PMC5068931
DOI
10.1534/g3.116.028639
PII: g3.116.028639
Knihovny.cz E-zdroje
- Klíčová slova
- Amaranthaceae, Chenopodium rubrum, FLOWERING LOCUS T/TERMINAL FLOWER1 gene family, evolution, flowering, gene rearrangement, transcriptome,
- MeSH
- Amaranthaceae klasifikace genetika růst a vývoj MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- konformace proteinů MeSH
- květy genetika MeSH
- molekulární evoluce * MeSH
- molekulární modely MeSH
- multigenová rodina MeSH
- orgánová specificita MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny * MeSH
- rostlinné proteiny chemie genetika MeSH
- stanovení celkové genové exprese MeSH
- světlo MeSH
- transkriptom MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
The FT/TFL1 gene family controls important aspects of plant development: MFT-like genes affect germination, TFL1-like genes act as floral inhibitors, and FT-like genes are floral activators. Gene duplications produced paralogs with modified functions required by the specific lifestyles of various angiosperm species. We constructed the transcriptome of the weedy annual plant Chenopodium rubrum and used it for the comprehensive search for the FT/TFL1 genes. We analyzed their phylogenetic relationships across Amaranthaceae and all angiosperms. We discovered a very ancient phylogenetic clade of FT genes represented by the CrFTL3 gene of C. rubrum Another paralog CrFTL2 showed an unusual structural rearrangement which might have contributed to the functional shift. We examined the transcription patterns of the FT/TFL1 genes during the vegetative growth and floral transition in C. rubrum to get clues about their possible functions. All the genes except for the constitutively expressed CrFTL2 gene, and the CrFTL3 gene, which was transcribed only in seeds, exhibited organ-specific expression influenced by the specific light regime. The CrFTL1 gene was confirmed as a single floral activator from the FT/TFL1 family in C. rubrum Its floral promoting activity may be counteracted by CrTFL1 C. rubrum emerges as an easily manipulated model for the study of floral induction in weedy fast-cycling plants lacking a juvenile phase.
Zobrazit více v PubMed
Ahn J. H., Miller D., Winter V. J., Banfield M. J., Lee J. H., et al. , 2006. A divergent external loop confers antagonistic activity on floral regulators PubMed PMC
Blackman B. K., Strasburg J. L., Raduski A. R., Michaels S. D., Rieseberg L. H., 2010. The role of recently derived PubMed PMC
Bolger A. M., Lohse M., Usadel B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Cháb D., Kolář J., Olson M. S., Štorchová H., 2008. Two PubMed
Coelho C. P., Minow M. A., Chalfun A., Colasanti J., 2014. Putative sugarcane PubMed PMC
Conti L., Bradley D., 2007. PubMed PMC
Corbesier L., Vincent C., Jang S. H., Fornara F., Fan Q. Z., et al. , 2007. FT protein movement contributes to long-distance signaling in floral induction of PubMed
Cumming B. G., 1967. Early-flowering plants, pp. 277–299 in
D’Aloia M., Bonhomme D., Bouche F., Tamseddak K., Ormenese S., et al. , 2011. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the PubMed
Dohm J. C., Minoche A. E., Holtgräwe D., Capella-Gutierrez S., Zakrzewski F., et al. , 2014. The genome of the recently domesticated crop plant sugar beet ( PubMed
Drabešová J., Cháb D., Kolář J., Haškovcová K., Štorchová H., 2014. A darklight transition triggers expression of the floral promoter PubMed PMC
Duarte J. M., Wall P. K., Edger P. P., Landherr L. L., Ma H., et al. , 2010. Identification of shared single copy nuclear genes in PubMed PMC
Edgar R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797. PubMed PMC
Fuentes-Bazan S., Mansion G., Borsch T., 2012. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol. Phylogenet. Evol. 62: 359–374. PubMed
Goodstein D. M., Shu S., Howson R., Neupane R., Hayes R. D., et al. , 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40: D1178–D1186. PubMed PMC
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., et al. , 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29: 644–652. PubMed PMC
Hanano S., Goto K., 2011. PubMed PMC
Hanzawa Y., Money T., Bradley D., 2005. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 102: 7748–7753. PubMed PMC
Harig L., Beinecke F. A., Oltmanns J., Muth J., Müller O., et al. , 2012. Proteins from the PubMed
Hayama R., Agashe B., Luley E., King R., Coupland G., 2007. A circadian rhythm set by dusk determines the expression of PubMed PMC
Hedman H., Källman T., Lagercrantz U., 2009. Early evolution of the PubMed
Ho W. W. H., Weigel D., 2014. Structural features determining flower-promoting activity of PubMed PMC
Huang N. C., Jane W. N., Chen J., Yu T. S., 2012. PubMed
Jaeger K. E., Wigge P. A., 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050–1054. PubMed
Kalgren A., Gyllestrand N., Källman T., Sundström J. F., Moore D., et al. , 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol. 156: 1967–1977. PubMed PMC
Kardailsky I., Shukla V., Ahn J. H., Dagenais N., Christensen S. K., et al. , 1999. Activation tagging of the floral inducer PubMed
Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T., et al. , 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960–1962. PubMed
Kolano B., Tomczak H., Molewska R., Jellen E. N., Maluszynska J., 2012. Distribution of 5S and 35S rRNA gene sites in 34
Kozik, A., I. Kozik, H. Van Leeuwen, A. Van Deynze, and R. Michelmore, 2008 Eukaryotic ultra conserved orthologs and estimation of gene capture in EST libraries. Plant and Animal Genomes Conference XVI, San Diego.
Lachowiec J., Shen X., Queitsch C., Carlgorg Ö., 2015. A genome-wide association analysis reveals epistatic cancellation of additive genetic variance for root length in PubMed PMC
Langmead B., Trapnell C., Pop M., Salzberg S. L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: R25. PubMed PMC
Li B., Dewey C. N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323. PubMed PMC
Li B., Fillmore N., Bai Y., Collins M., Thomson J. A., et al. , 2014. Evaluation of PubMed PMC
Li W., Godzik A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659. PubMed
Librado P., Rozas J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed
Libus J., Štorchová H., 2006. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques 41: 156–164. PubMed
Lifschitz E., Ayre B. G., Eshed Y., 2014. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Front. Plant Sci. 5: 465. PubMed PMC
Loeve A., Loeve D., 1982. IOPB chromosome number reports LXXIV. Taxon 31: 120–126.
Martin J. A., Wang Z., 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 13: 671–682. PubMed
Nakamura Y., Andres F., Kanehara K., Liu Y. C., Doermann P., et al. , 2014. PubMed PMC
Nakasugi K., Crowhurst R., Bally J., Waterhouse P., 2014. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant PubMed PMC
Navarro C. J. A., Abelenda E., Cruz-Oró C. A., Cuéllar S., Tamaki S., et al. , 2011. Control of flowering and storage organ formation in potato by PubMed
O’Neil S. T., Dzurisin J. D. K., Carmichael R. D., Lobo N. F., Emrich S. J., et al. , 2010. Population-level transcriptome sequencing of nonmodel organisms PubMed PMC
Pin P. A., Benlloch R., Bonnet D., Wremerth-Weich E., Kraft T., et al. , 2010. An antagonistic pair of PubMed
Robertson G., Schein J., Chiu R., Corbett R., Field M., et al. , 2010. PubMed
Ryu J. Y., Park C. M., Seo P. J., 2011. The floral repressor PubMed PMC
Schulz M. H., Zerbino D. R., Vingron M., Birney E., 2012. Oases: robust PubMed PMC
Seidlová F., Krekule J., 1973. The negative response of photoperiodic floral induction in
Simon R., Igeno M. I., Coupland G., 1996. Activation of floral meristem identity genes in Arabidopsis. Nature 384: 59–62. PubMed
Stamatakis A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. PubMed PMC
Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., et al. , 2010. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat. Biotechnol. 28: 511–515. PubMed PMC
Vaňková R., Petrášek J., Zažímalová E., Kamínek M., Motyka V., et al. , 2014. Auxins and cytokinins in plant development ... and interactions with other phytohormones 2014. J. Plant Growth Regul. 33: 709–714.
Veit J., Wagner E., Albrechtova J. T. P., 2004. Isolation of a PubMed
Veit J., Wagner E., Albrechtova J. T. P., 2006. Floral dip transformation of
Wada K. C., Yamada M., Shiraya T., Takeno K., 2010. Salicylic acid and the flowering gene PubMed
Wang Z., Zhou Z. K., Liu Y. F., Liu T. F., Li Q., et al. , 2015. Functional evolution of phosphatidylethanolamine binding proteins in soybean and arabidopsis. Plant Cell 27: 323–336. PubMed PMC
Webb B., Sali A., 2014. Protein structure modeling with MODELLER. Methods Mol. Biol. 1137: 1–15. PubMed
Wickland D. P., Hanzawa Y., 2015. The PubMed
Xi W., Liu C., Hou X., Yu H., 2010. PubMed PMC
Xie Y., Wu G., Tang J., Luo R., Patterson J., et al. , 2014. SOAPdenovo-Trans, PubMed
Yang Y., Smith S. A., 2013. Optimizing PubMed PMC
Zhang J., Ruhlman T. A., Mower J. P., Jansen R. K., 2013. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC Plant Biol. 13: 228. PubMed PMC
A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium