Chenopodium ficifolium flowers under long days without upregulation of FLOWERING LOCUS T (FT) homologs
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
13-02290S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 67985939
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31584118
DOI
10.1007/s00425-019-03285-1
PII: 10.1007/s00425-019-03285-1
Knihovny.cz E-zdroje
- Klíčová slova
- Amaranthaceae, FLOWERING LOCUS T like genes, Floral induction, Gene expression, Photoperiod, Transcriptome,
- MeSH
- aktivace transkripce MeSH
- Chenopodium genetika růst a vývoj MeSH
- fotoperioda MeSH
- květy genetika růst a vývoj MeSH
- Magnoliopsida genetika růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- upregulace * MeSH
- Publikační typ
- časopisecké články MeSH
Chenopodium ficifoliumflowered under long days despite much lower expression ofFLOWERING LOCUS Thomolog than under short days. Frequent duplications of the FLOWERING LOCUS T (FT) gene across various taxonomic lineages resulted in FT paralogs with floral repressor function, whereas others duplicates maintained their floral-promoting role. The FT gene has been confirmed as the inducer of photoperiodic flowering in most angiosperms analyzed to date. We identified all FT homologs in the transcriptome of Chenopodium ficifolium and in the genome of Chenopodium suecicum, which are closely related to diploid progenitors of the tetraploid crop Chenopodium quinoa, and estimated their expression during photoperiodic floral induction. We found that expression of FLOWERING LOCUS T like 1 (FTL1), the ortholog of the sugar beet floral activator BvFT2, correlated with floral induction in C. suecicum and short-day C. ficifolium, but not with floral induction in C. ficifolium with accelerated flowering under long days. This C. ficifolium accession was induced to flowering without the concomitant upregulation of any FT homolog.
Zobrazit více v PubMed
BMC Plant Biol. 2014 Jan 07;14:9 PubMed
Bioinformatics. 2006 Jul 1;22(13):1658-9 PubMed
Front Plant Sci. 2015 Jan 28;5:803 PubMed
Cell. 1992 May 29;69(5):843-59 PubMed
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 PubMed
Development. 2012 Jun;139(12):2198-209 PubMed
Science. 1999 Dec 3;286(5446):1962-5 PubMed
J Exp Bot. 2014 May;65(8):2137-46 PubMed
Plant J. 2012 Dec;72(6):908-21 PubMed
Nat Biotechnol. 2011 May 15;29(7):644-52 PubMed
Plant Physiol. 2012 Jul;159(3):1043-54 PubMed
Bioinformatics. 2014 Aug 1;30(15):2114-20 PubMed
Mol Phylogenet Evol. 2018 Dec;129:189-201 PubMed
Bioinformatics. 2014 May 1;30(9):1312-3 PubMed
Nat Commun. 2013;4:2884 PubMed
Nat Protoc. 2012 Mar 01;7(3):562-78 PubMed
Nature. 2001 Apr 26;410(6832):1116-20 PubMed
Plant Cell Environ. 2012 Oct;35(10):1742-55 PubMed
New Phytol. 2018 Feb;217(3):1335-1345 PubMed
Mol Biol Evol. 2007 Aug;24(8):1586-91 PubMed
Plant Physiol. 2017 Jun;174(2):1097-1109 PubMed
Science. 2005 Aug 12;309(5737):1056-9 PubMed
Planta. 2009 Feb;229(3):507-21 PubMed
G3 (Bethesda). 2016 Oct 13;6(10):3065-3076 PubMed
BMC Bioinformatics. 2011 Aug 04;12:323 PubMed
Science. 2010 Dec 3;330(6009):1397-400 PubMed
Plant Cell. 2006 Sep;18(9):2172-81 PubMed
Front Plant Sci. 2016 Jan 11;6:1213 PubMed
J Exp Bot. 2008;59(14):3821-9 PubMed
Nat Methods. 2012 Mar 04;9(4):357-9 PubMed
Plant Cell Physiol. 2012 Nov;53(11):1827-42 PubMed
Planta. 2008 Nov;228(6):929-40 PubMed
Am J Bot. 2015 Apr;102(4):533-43 PubMed
Cell. 1995 Mar 24;80(6):847-57 PubMed
Nature. 2017 Feb 16;542(7641):307-312 PubMed
Front Plant Sci. 2015 Apr 09;6:207 PubMed
Plant Cell. 2014 Feb;26(2):552-64 PubMed
Nature. 1992 Nov 19;360(6401):273-7 PubMed
Nature. 2011 Sep 25;478(7367):119-22 PubMed
Science. 2010 Apr 2;328(5974):85-9 PubMed
EMBO J. 2006 Feb 8;25(3):605-14 PubMed
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 PubMed
J Exp Bot. 2011 May;62(8):2453-63 PubMed