Two flowering locus T (FT) homologs in Chenopodium rubrum differ in expression patterns
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Chenopodium genetika růst a vývoj metabolismus účinky záření MeSH
- cirkadiánní rytmus MeSH
- fotoperioda MeSH
- komplementární DNA chemie MeSH
- květy genetika růst a vývoj metabolismus účinky záření MeSH
- messenger RNA metabolismus MeSH
- molekulární sekvence - údaje MeSH
- regulace genové exprese u rostlin účinky záření MeSH
- rostlinné proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplementární DNA MeSH
- messenger RNA MeSH
- rostlinné proteiny MeSH
FLOWERING LOCUS T (FT) like genes are crucial regulators (both positive and negative) of flowering in angiosperms. We identified two FT homologs in Chenopodium rubrum, a short-day species used as a model plant for the studies of photoperiodic flower induction. We found that CrFTL1 gene was highly inducible by a 12-h dark period, which in turn induced flowering. On the other hand, photoperiodic treatments that did not induce flowering (short dark periods, or a permissive darkness interrupted by a night break) caused only a slight increase in CrFTL1 mRNA level. We demonstrated diurnal oscillation of CrFTL1 expression with peaks in the middle of a light period. The oscillation persisted under constant darkness. Unlike FT homologs in rice and Pharbitis, the CrFTL1 expression under constant darkness was very low. The CrFTL2 gene showed constitutive expression. We suggest that the CrFTL1 gene may play a role as a floral regulator, but the function of CrFTL2 remains unknown.
Institute of Experimental Botany vvi Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Science. 1999 Dec 3;286(5446):1962-5 PubMed
Science. 2007 May 18;316(5827):1033-6 PubMed
Science. 1997 Jan 3;275(5296):80-3 PubMed
Plant Cell. 2007 Oct;19(10):2988-3000 PubMed
Nature. 2003 Apr 17;422(6933):719-22 PubMed
Plant Mol Biol. 2003 Aug;52(6):1215-22 PubMed
Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):573-8 PubMed
Science. 1999 Dec 3;286(5446):1960-2 PubMed
Mol Cells. 2004 Feb 29;17(1):95-101 PubMed
Genes Dev. 2004 Apr 15;18(8):926-36 PubMed
Eur J Biochem. 1987 Jul 15;166(2):333-8 PubMed
Genetics. 2000 Jan;154(1):459-73 PubMed
Plant Cell. 2000 Dec;12(12):2473-2484 PubMed
Curr Biol. 2007 Jun 19;17(12):1050-4 PubMed
Plant Mol Biol. 2002 Aug;49(6):567-77 PubMed
Plant Cell. 2006 Aug;18(8):1846-61 PubMed
Nature. 2001 Apr 26;410(6832):1116-20 PubMed
Science. 2005 Aug 12;309(5737):1056-9 PubMed
Plant Cell Physiol. 2005 Aug;46(8):1175-89 PubMed
Nat Genet. 2003 Feb;33(2):168-71 PubMed
Biotechniques. 2006 Feb;40(2):187-9 PubMed
Genes Cells. 2001 Apr;6(4):327-36 PubMed
Cell. 1995 Mar 24;80(6):847-57 PubMed
Plant Physiol. 2005 Apr;137(4):1420-34 PubMed
Plant Cell. 2005 Dec;17(12):3326-36 PubMed
Plant Cell Physiol. 2002 Oct;43(10):1096-105 PubMed
Adv Genet. 2002;46:451-83 PubMed
EMBO J. 2006 Feb 8;25(3):605-14 PubMed
Science. 2000 Jun 2;288(5471):1613-6 PubMed