Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

. 2017 ; 12 (8) : e0183470. [epub] 20170817

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid28817728

Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not.

Zobrazit více v PubMed

Wang H, Wang J, Jiang J, Chen S, Guan Z, Liao Y, et al. Reference genes for normalizing transcription in diploid and tetraploid Arabidopsis. Sci Rep 2014; 4:6781 doi: 10.1038/srep06781 PubMed DOI PMC

Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 2008; 8:131 doi: 10.1186/1471-2229-8-131 PubMed DOI PMC

Zhu X, Li X, Chen WX, Chen J, Lu W, Chen L, et al. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PloS One 2012; 7:e444405 doi: 10.1371/journal.pone.0044405 PubMed DOI PMC

Zemp N, Minder A, Widmer A. Identification of internal reference genes for gene expression normalization between the two sexes in dioecious white campion. PloS One 2014; 9:e92893 doi: 10.1371/journal.pone.0092893 PubMed DOI PMC

Yang Z, Chen Y, Hu B, Tan Z, Huang B. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PloS One 2015; 10: e0119569 doi: 10.1371/journal.pone.0119569 PubMed DOI PMC

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55(4): 611–622. doi: 10.1373/clinchem.2008.112797 PubMed DOI

Boava LP, Laia ML, Jacob TR, Dabbas KM, Gonçalves JF, Ferro JA, et al. Selection of endogenous genes for gene expression studies in Eucalyptus under biotic (Puccinia psidii) and abiotic (acibenzolar-S-methyl) stresses using RT-qPCR. BMC Res Notes 2010; 3:43 doi: 10.1186/1756-0500-3-43 PubMed DOI PMC

Carvalho K, de Campos MK, Pereira LF, Vieira LG. Reference gene selection for real-time quantitative polymerase chain reaction normalization in "Swingle" citrumelo under drought stress. Anal Biochem 2010; 402(2):197–199. doi: 10.1016/j.ab.2010.03.038 PubMed DOI

Fernández M, Villarroel C, Balbontín C, Valenzuela S. Validation of reference genes for real-time qRT-PCR normalization during cold acclimation in Eucalyptus globulus. Trees-Struct Funct 2010; 24(6):1109–1116.

Garg R, Sahoo A, Tyagi AK, Jain M. Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 2010; 396(2):283–288. doi: 10.1016/j.bbrc.2010.04.079 PubMed DOI

Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P. Validation of reference genes for quantitative RTP-CR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 2010; 11:8 doi: 10.1186/1471-2199-11-8 PubMed DOI PMC

Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, et al. Identification of four soybean reference genes for gene expression normalization. Plant Genome 2008; 1(1):44–54.

Xiao XL, Wu XM, Ma JB, Li PB, Li TT, Yao YA. Systematic assessment of reference genes for RT-qPCR across plant species under salt stress and drought stress. Acta Physiol Plant 2015; 37(9). doi: 10.1007/s11738-015-1922-8 DOI

Chen X, Mao YJ, Huang SW, Ni J, Lu WL, Hou JY, et al. Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum. Front Plant Sci 2017; 8:637 doi: 10.3389/fpls.2017.00637 PubMed DOI PMC

Wang ML, Li QH, Xin HH, Chen X, Zhu XJ, Li XH. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses. PloS One 2017; 4:e0175863 doi: 10.1371/journal.pone.0175863 PubMed DOI PMC

Long XY, Wang JR, Ouellet T, Rocheleau H, Wei YU, Pu ZE, et al. Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Mol Biol 2010; 74(3):307–311. doi: 10.1007/s11103-010-9666-8 PubMed DOI

Jain M. Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice. Plant Sci 2009; 176(5):702–706.

Ovesná J, Kučera L, Vaculová K, Štrymplová K, Svobodová I, Milella L. Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis. Plos One 2012; 7(7): e41886 doi: 10.1371/journal.pone.0041886 PubMed DOI PMC

Podevin N, Krauss A, Henry I., Swennen R, Remy S. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. Mol Breed 2012; 30(3):1237–1252. doi: 10.1007/s11032-012-9711-1 PubMed DOI PMC

Yeap WC, Loo JM, Wong YC, Kulaveerasingam H. Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm. Plant Cell Tiss Organ Cult 2014; 116(1): 55–66.

Freitas NC, Barreto HG, Fernandes-Brum CN, Moreira RO, Chalfun A, Paiva LV. Validation of reference genes for qPCR analysis of Coffea arabica L. somatic embryogenesis-related tissues. Plant Cell Tiss Organ Cult 2017; 128(3):663–678.

Yang Y, Hou S, Cui G, Chen S, Wei J, Huang L. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol Biol Rep 2010; 37(1):507–513. doi: 10.1007/s11033-009-9703-3 PubMed DOI

Karuppaiya P, Yan XX, Liao W, Wu J, Chen F, Tang L. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas—A biodiesel plant. PloS One 2017; 12:e0172460 doi: 10.1371/journal.pone.0172460 PubMed DOI PMC

Li WG, Zhang LH, Zhang YD, Wang GD, Song DY, Zhang YW. Selection and validation of appropriate reference genes for quantitative real-time PCR normalization in staminate and perfect flowers of andromonoecious Taihangia rupestris. Front Plant Sci 2017; 8:729 doi: 10.3389/fpls.2017.00729 PubMed DOI PMC

Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov DA, et al. Silene as a model system in ecology and evolution. Heredity 2009; 103(1): 5–14. doi: 10.1038/hdy.2009.34 PubMed DOI

Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 2004; 16(S): S154–S169. PubMed PMC

Budar F, Touzet P, De Paepe R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 2003; 117(1):3–26. PubMed

Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol 2012; 196(4):1228–1239. doi: 10.1111/j.1469-8137.2012.04340.x PubMed DOI

Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 2012; 12(2):333–343. doi: 10.1111/j.1755-0998.2011.03079.x PubMed DOI

Blavet N, Charif D, Oger-Desfeux C, Marais GA, Widmer A. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database. BMC Genomics 2011; 12:376 doi: 10.1186/1471-2164-12-376 PubMed DOI PMC

Gagliardi D, Leaver CJ. Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J 1999; 18(13):3757–3766. doi: 10.1093/emboj/18.13.3757 PubMed DOI PMC

Lupold DS, Caoile AGFS, Stern DB. Polyadenylation occurs at multiple sites in maize mitochondrial cox2 mRNA and is independent of editing status. Plant Cell 1999; 11(8):1565–1578. PubMed PMC

Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci U S A 2003; 100(10):5968–5973. doi: 10.1073/pnas.1037651100 PubMed DOI PMC

Xu YZ, Arrieta-Montiel MP, Virdi KS, de Paula WB, Widhalm JR, Basset GJ, et al. MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. Plant Cell 2011; 23(9):3428–3441. doi: 10.1105/tpc.111.089136 PubMed DOI PMC

González-Verdejo CI, Die JV, Nadal S, Jiménez-Marín A, Moreno MT, Román B. Selection of housekeeping genes for normalization by real-time RT–PCR: Analysis of Or-MYB1 gene expression in Orobanche ramosa development. Anal Biochem 2008; 379(2):176–181. doi: 10.1016/j.ab.2008.05.003 PubMed DOI

Jain M, Nijhawan A, Tyagi AK, Khurana JP. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 2006; 345(2):646–651. doi: 10.1016/j.bbrc.2006.04.140 PubMed DOI

Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 2003; 25(21):1869–1872. PubMed

Maroufi A,Van Bockstaele E, De Loose M. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 2010; 11:15 doi: 10.1186/1471-2199-11-15 PubMed DOI PMC

Cháb D, Kolář J, Olson MS, Štorchová H. Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 2008; 228(6):929–940. doi: 10.1007/s00425-008-0792-3 PubMed DOI

Li QF, Sun SSM, Yuan DY, Yu HX, Gu MH, Liu QQ. Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Rep 2010; 28(1):49–57.

Hoenemann C, Hohe A. Selection of reference genes for normalization of quantitative real-time PCR in cell cultures of Cyclamen persicum. Electron J Biotechnol 2011; 14(1):8 doi: 10.2225/vol14-issue1-fulltext-8 DOI

Jian B, Liu B, Bi YR, Hou WS, Wu CX, Han TF. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 2008; 9:59 doi: 10.1186/1471-2199-9-59 PubMed DOI PMC

Lin YL, Lai Z.X. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 2010; 178(4):359–365.

Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 2010; 10:4 doi: 10.1186/1471-2229-10-4 PubMed DOI PMC

Nicot N, Hausman JF, Hoffmann L, Le Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 2005; 56(421):2907–2914. doi: 10.1093/jxb/eri285 PubMed DOI

Silveira ED, Alves-Ferreira M, Guimarães LA, da Silva FR, Carneiro VTD. Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 2009; 9:84 doi: 10.1186/1471-2229-9-84 PubMed DOI PMC

Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 2010; 399(2):257–261. doi: 10.1016/j.ab.2009.12.008 PubMed DOI

Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 2009; 10:1 doi: 10.1186/1471-2199-10-1 PubMed DOI PMC

Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 2010; 10:71 doi: 10.1186/1471-2229-10-71 PubMed DOI PMC

Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 2006; 6:27 doi: 10.1186/1471-2229-6-27 PubMed DOI PMC

Hong SY, Seo PJ, Yang MS, Xiang F, Park CM. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 2008; 8:112 doi: 10.1186/1471-2229-8-112 PubMed DOI PMC

Hu RB, Fan CM, Li HY, Zhang QZ, Fu YF. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 2009; 10:93 doi: 10.1186/1471-2199-10-93 PubMed DOI PMC

de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, Fett-Neto AG. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol Biol 2010; 11:73 doi: 10.1186/1471-2199-11-73 PubMed DOI PMC

Artico S, Nardeli SM, Brilhante O, Grossi De-Sa MF, Alves-Ferreira M. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data BMC Plant Biol 2010; 10:49 doi: 10.1186/1471-2229-10-49 PubMed DOI PMC

Dombrowski JE, Martin RC. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci 2009; 176(3):390–396.

Gimeno J, Eattock N, Van Deynze A, Blumwald E. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PloS One 2014; 9(3): e91474 doi: 10.1371/journal.pone.0091474 PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4):357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6):841–842. doi: 10.1093/bioinformatics/btq033 PubMed DOI PMC

Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol 2012; 80(1):75–84. PubMed

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3(7):1–34. PubMed PMC

Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004; 64(15):5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 PubMed DOI

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 2004; 26(6):509–515. PubMed

Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 2006; 7:33 doi: 10.1186/1471-2199-7-33 PubMed DOI PMC

Havlová M, Dobrev PI, Motyka V, Štorchová H, Libus J, Dobrá J, et al. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 2008; 31(3): 341–353. doi: 10.1111/j.1365-3040.2007.01766.x PubMed DOI

de Andrade LM, Brito MD, Peixoto RF, Marchiori PER, Nobile PM, Martins APB, et al. Reference genes for normalization of qPCR assays in sugarcane plants under water deficit. Plant Methods 2017; 13:28 doi: 10.1186/s13007-017-0178-2 PubMed DOI PMC

Wu J, Zhang JH, Pan Y, Huang HH, Lou XZ, Tong ZK. Identification and evaluation of reference genes for normalization in quantitative real-time PCR analysis in the premodel tree Betula luminifera. J For Res 2017; 28(2):273–282.

Sun HP, Li F, Ruan QM, Zhong XH. Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. Plant Physiol Biochem 2016; 108:286–294. doi: 10.1016/j.plaphy.2016.07.022 PubMed DOI

Niu XP, Chen MX, Huang XY, Chen HH, Tao AF, Xu JT, et al. Reference gene selection for qRT-PCR normalization analysis in kenaf (Hibiscus cannabinus L.) under abiotic stress and hormonal stimuli. Front Plant Sci 2017; 8:771 doi: 10.3389/fpls.2017.00771 PubMed DOI PMC

Wallström SV, Aidemark M, Escobar MA, Rasmusson AG. An alternatively spliced domain of the NDC1 NAD(P)H dehydrogenase gene strongly influences the expression of the ACTIN2 reference gene in Arabidopsis thaliana. Plant Sci 2012; 183:190–196. doi: 10.1016/j.plantsci.2011.08.011 PubMed DOI

Wang XM, Fu YY, Ban LP, Wang Z, Feng GY, Li J, et al. Selection of reliable reference genes for quantitative real-time RT-PCR in alfalfa. Genes Genet Syst 2015; 90(3):175–180. doi: 10.1266/ggs.90.175 PubMed DOI

Huang YX, Tan HX, Yu J, Chen Y, Guo ZY, Wang GQ, et al. Stable Internal Reference Genes for Normalizing Real-Time Quantitative PCR in Baphicacanthus cusia under Hormonal Stimuli and UV Irradiation, and in Different Plant Organs. Front Plant Sci 2017; 8:668 doi: 10.3389/fpls.2017.00668 PubMed DOI PMC

Virdi KS, Laurie JD, Xu YZ, Yu J, Shao MR, Sanchez R, et al. Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat Commun 2015; 6:6386 doi: 10.1038/ncomms7386 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...