Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33339225
PubMed Central
PMC7766179
DOI
10.3390/cells9122700
PII: cells9122700
Knihovny.cz E-zdroje
- Klíčová slova
- Silene vulgaris, cytoplasmic male sterility, differential gene expression,
- MeSH
- anotace sekvence MeSH
- buněčné jádro genetika MeSH
- down regulace genetika MeSH
- genová ontologie MeSH
- haplotypy genetika MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- neplodnost rostlin genetika MeSH
- oxidační stres genetika MeSH
- oxidoreduktasy genetika metabolismus MeSH
- pyl genetika MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Silene genetika fyziologie MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alternative oxidase MeSH Prohlížeč
- messenger RNA MeSH
- mitochondriální proteiny MeSH
- oxidoreduktasy MeSH
- rostlinné proteiny MeSH
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Institute of Experimental Botany Czech Academy of Sciences Rozvojová 263 16502 Prague Czech Republic
Zobrazit více v PubMed
Horn R., Gupta K.J., Colombo N. Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion. 2014;19:198–205. doi: 10.1016/j.mito.2014.04.004. PubMed DOI
Touzet P., Meyer E.H. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion. 2014;19:166–171. doi: 10.1016/j.mito.2014.04.009. PubMed DOI
Hanson M.R. Interactions of Mitochondrial and Nuclear Genes That Affect Male Gametophyte Development. Plant Cell. 2004;16:S154–S169. doi: 10.1105/tpc.015966. PubMed DOI PMC
Olson M.S., McCauley D.E. Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris. Evolution. 2002;56:253–262. doi: 10.1111/j.0014-3820.2002.tb01335.x. PubMed DOI
Dufay M., Champelovier P., Käfer J., Henry J.P., Mousset S., Ab Marais G. An angiosperm-wide analysis of the gynodioecy–dioecy pathway. Ann. Bot. 2014;114:539–548. doi: 10.1093/aob/mcu134. PubMed DOI PMC
Renner S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI
Bernasconi G., Antonovics J., Biere A.L., Charlesworth D., Delph L.F., Filatov D.A., Giraud T., Hood M.E., Marais G.A.B., McCauley D.W., et al. Silene as a model system in ecology and evolution. Heredity. 2009;103:5–14. doi: 10.1038/hdy.2009.34. PubMed DOI
Štorchová H., Olson M.S. Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris. Mol. Ecol. 2004;13:2909–2919. doi: 10.1111/j.1365-294X.2004.02278.x. PubMed DOI
Barr C.M., Keller S.R., Ingvarsson P., Sloan D.B., Taylor U.R. Variation in Mutation Rate and Polymorphism Among Mitochondrial Genes of Silene vulgaris. Mol. Biol. Evol. 2007;24:1783–1791. doi: 10.1093/molbev/msm106. PubMed DOI
Sebasky M.E., Keller S.R., Taylor D.R. Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecol. Evol. 2016;6:4800–4811. doi: 10.1002/ece3.2250. PubMed DOI PMC
Štorchová H., Müller K., Lau S., Olson M.S. Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris. PLoS ONE. 2012;7:e30401. doi: 10.1371/journal.pone.0030401. PubMed DOI PMC
Štorchová H., Stone J.D., Sloan D.B., Abeyawardana O.A.J., Müller K., Walterová J., Pažoutová M. Homologous recombination changes the context of Cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genom. 2018;19:874. doi: 10.1186/s12864-018-5254-0. PubMed DOI PMC
Sloan D.B., Müller K., McCauley D.E., Taylor D.R., Štorchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content inSilene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol. 2012;196:1228–1239. doi: 10.1111/j.1469-8137.2012.04340.x. PubMed DOI
Xie Y., Zhang W., Wang Y., Xu L., Zhu X., Muleke E.M., Liu L. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer. Funct. Integr. Genom. 2016;16:529–543. doi: 10.1007/s10142-016-0504-1. PubMed DOI
Li C., Zhao Z., Liu Y., Liang B., Guan S., Lan H., Wang J., Lu Y., Cao M. Comparative transcriptome analysis of isonuclear-alloplasmic lines unmask key transcription factor genes and metabolic pathways involved in sterility of maize CMS-C. PeerJ. 2017;5:e3408. doi: 10.7717/peerj.3408. PubMed DOI PMC
Pei X., Jing Z., Tang Z., Zhu Y. Comparative transcriptome analysis provides insight into differentially expressed genes related to cytoplasmic male sterility in broccoli (Brassica oleracea var. italica) Sci. Hortic. 2017;217:234–242. doi: 10.1016/j.scienta.2017.01.041. DOI
Chen G., Ye X., Zhang S., Zhu S., Yuan L., Hou J., Wang C. Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.) BMC Genom. 2018;19:908. doi: 10.1186/s12864-018-5331-4. PubMed DOI PMC
Hamid R., Tomar R.S., Marashi H., Shafaroudi S.M., Golakiya B., Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.) Gene. 2018;660:80–91. doi: 10.1016/j.gene.2018.03.070. PubMed DOI
Liu B., Ou C., Chen S., Cao Q., Zhao Z., Miao Z., Kong X., Zhuang F.-Y. Differentially Expressed Genes between Carrot Petaloid Cytoplasmic Male Sterile and Maintainer during Floral Development. Sci. Rep. 2019;9:17384. doi: 10.1038/s41598-019-53717-x. PubMed DOI PMC
Janzen G.M., Wang L., Hufford M.B. The extent of adaptive wild introgression in crops. New Phytol. 2018;221:1279–1288. doi: 10.1111/nph.15457. PubMed DOI
Haas M., Himmelbach A., Mascher M. The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. J. Exp. Bot. 2020;71:2573–2584. doi: 10.1093/jxb/eraa036. PubMed DOI PMC
Case A.L., Willis J.H. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangeMENT. Evolution. 2008;62:1026–1039. doi: 10.1111/j.1558-5646.2008.00360.x. PubMed DOI
Yamamoto M.P., Shinada H., Onodera Y., Komaki C., Mikami T., Kubo T. A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J. 2008;54:1027–1036. doi: 10.1111/j.1365-313X.2008.03473.x. PubMed DOI
Stone J.D., Koloušková P., Sloan D.B., Štorchová H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J. Exp. Bot. 2017;68:1599–1612. doi: 10.1093/jxb/erx057. PubMed DOI PMC
Krüger M., Abeyawardana O.A.J., Juříček M., Krüger C., Štorchová H. Variation in plastid genomes in the gynodioecious species Silene vulgaris. BMC Plant Biol. 2019;19:568. doi: 10.1186/s12870-019-2193-0. PubMed DOI PMC
Song L., Florea L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 2015;4:48. doi: 10.1186/s13742-015-0089-y. PubMed DOI PMC
Kopylova E., Noé L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Li W., Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Gilbert D.G. Longest protein, longest transcript or most expression, for accurate gene reconstruction of transcriptomes? bioRxiv. 2019:829184. doi: 10.1101/829184. DOI
Seppey M., Manni M., Zdobnov E.M. BUSCO: Assessing genome assembly and annotation completeness. In: Kollmar M., editor. Gene Prediction. Volume 1962. Methods in Molecular Biology; Humana; New York, NY, USA: 2019. pp. 227–245. PubMed
Li B., Fillmore N., Bai Y., Collins M., Thomson J.A., Stewart R., Dewey C.N. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. 2014;15:553. doi: 10.1186/s13059-014-0553-5. PubMed DOI PMC
Zhang J., Ruhlman T., Mower J.P., Jansen R. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC Plant Biol. 2013;13:228. doi: 10.1186/1471-2229-13-228. PubMed DOI PMC
Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Patro R., Duggal G., Love M.I., Irizarry M.I.L.R.A., Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Robinson M.D., Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC
Koloušková P., Stone J.D., Štorchová H. Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation. PLoS ONE. 2017;12:e0183470. doi: 10.1371/journal.pone.0183470. PubMed DOI PMC
Stone J.D., Štorchová H. The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes. Mol. Genet. Genom. 2014;290:1–9. doi: 10.1007/s00438-014-0905-6. PubMed DOI
Sloan D.B., Keller S.R., Berardi A.E., Sanderson B.J., Karpovich J.F., Taylor D.R. De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae) Mol. Ecol. Resour. 2011;12:333–343. doi: 10.1111/j.1755-0998.2011.03079.x. PubMed DOI
Gastaldi V., Lucero L., Ferrero L., Ariel F., Gonzalez D.H. Class-I TCP Transcription Factors Activate the SAUR63 Gene Subfamily in Gibberellin-Dependent Stamen Filament Elongation. Plant Physiol. 2020;182:2096–2110. doi: 10.1104/pp.19.01501. PubMed DOI PMC
Verma N. Transcriptional regulation of anther development in Arabidopsis. Gene. 2019;689:202–209. doi: 10.1016/j.gene.2018.12.022. PubMed DOI
Hu L., Liang W., Yin C., Cui X., Zong J., Wang X., Hu J., Zhang D. Rice MADS3 Regulates ROS Homeostasis during Late Anther Development. Plant Cell. 2011;23:515–533. doi: 10.1105/tpc.110.074369. PubMed DOI PMC
Routray P., Li T., Yamasaki A., Yoshinari A., Takano J., Choi W.G., Sams C.E., Roberts D.M. Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation. Plant Physiol. 2018;178:1269–1283. doi: 10.1104/pp.18.00604. PubMed DOI PMC
Cecchetti V., Brunetti P., Napoli N., Fattorini L., Altamura M.M., Costantino P., Cardarelli M. ABCB1 and ABCB19 auxin transporters have synergistic effects on early and lateArabidopsisanther development. J. Integr. Plant Biol. 2015;57:1089–1098. doi: 10.1111/jipb.12332. PubMed DOI
Sheng Y., Wang Y., Jiao S., Jin Y., Ji P., Luan F. Mapping and Preliminary Analysis of ABORTED MICROSPORES (AMS) as the Candidate Gene Underlying the Male Sterility (MS-5) Mutant in Melon (Cucumis melo L.) Front. Plant Sci. 2017;8:902. doi: 10.3389/fpls.2017.00902. PubMed DOI PMC
Zluvova J., Zak J., Janousek B., Vyskot B. Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biol. 2010;10:208. doi: 10.1186/1471-2229-10-208. PubMed DOI PMC
Dobritsa A.A., Geanconteri A., Shrestha J., Carlson A.L., Kooyers N., Coerper D., Urbanczyk-Wochniak E., Bench B.J., Sumner L.W., Swanson R., et al. A Large-Scale Genetic Screen in Arabidopsis to Identify Genes Involved in Pollen Exine Production. Plant Physiol. 2011;157:947–970. doi: 10.1104/pp.111.179523. PubMed DOI PMC
Jiang J., Zhang Z., Cao J. Pollen wall development: The associated enzymes and metabolic pathways. Plant Biol. 2012;15:249–263. doi: 10.1111/j.1438-8677.2012.00706.x. PubMed DOI
Bosch M., Hepler P.K. Pectin Methylesterases and Pectin Dynamics in Pollen Tubes. Plant Cell. 2005;17:3219–3226. doi: 10.1105/tpc.105.037473. PubMed DOI PMC
Yuan Q., Song C., Gao L., Zhang H., Yang C., Sheng J., Ren J., Chen D., Wang Y. Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in onion. Plant Physiol. Biochem. 2018;125:35–44. doi: 10.1016/j.plaphy.2018.01.015. PubMed DOI
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. PubMed DOI
Yang L., Wu Y., Zhang M., Zhang J., Stewart J.M., Xing C., Wu J., Jin S. Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. Plant Mol. Biol. 2018;97:537–551. doi: 10.1007/s11103-018-0757-2. PubMed DOI
Luo D., Xu H., Liu Z., Guo J., Li H., Chen L., Fang C., Zhang Q., Bai M., Yao N., et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 2013;45:573–577. doi: 10.1038/ng.2570. PubMed DOI
Yi J., Moon S., Lee Y.-S., Zhu L., Liang W., Zhang D., Jung K.-H., An G. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. Plant Physiol. 2016;170:1611–1623. doi: 10.1104/pp.15.01561. PubMed DOI PMC
Escamez S., Stael S., Vainonen J.P., Willems P., Jin H., Kimura S., Van Breusegem F., Gevaert K., Wrzaczek M., Tuominen H. Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. J. Exp. Bot. 2019;70:2199–2210. doi: 10.1093/jxb/erz021. PubMed DOI PMC
Qin T., Tian Q., Wang G., Xiong L. LOWER TEMPERATURE 1 Enhances ABA Responses and Plant Drought Tolerance by Modulating the Stability and Localization of C2-Domain ABA-Related Proteins in Arabidopsis. Mol. Plant. 2019;12:1243–1258. doi: 10.1016/j.molp.2019.05.002. PubMed DOI
Ding B., Hao M., Mei D., Zaman Q.U., Sang S.-F., Wang H., Wang W.-X., Fu L., Cheng H., Hu Q. Transcriptome and Hormone Comparison of Three Cytoplasmic Male Sterile Systems in Brassica napus. Int. J. Mol. Sci. 2018;19:4022. doi: 10.3390/ijms19124022. PubMed DOI PMC
Ilyas M., Rasheed A., Mahmood T. Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches. Biotechnol. Lett. 2016;38:1405–1421. doi: 10.1007/s10529-016-2129-9. PubMed DOI
Millar A.H., Whelan J., Soole K.L., Day D.A. Organization and Regulation of Mitochondrial Respiration in Plants. Annu. Rev. Plant Biol. 2011;62:79–104. doi: 10.1146/annurev-arplant-042110-103857. PubMed DOI
Schwarzländer M., König A.-C., Sweetlove L.J., Finkemeier I. The impact of impaired mitochondrial function on retrograde signalling: A meta-analysis of transcriptomic responses. J. Exp. Bot. 2011;63:1735–1750. doi: 10.1093/jxb/err374. PubMed DOI
Kühn K., Obata T., Feher K., Bock R., Fernie A.R., Meyer E.H. Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I. Plant Physiol. 2015;168:1537–1549. doi: 10.1104/pp.15.00589. PubMed DOI PMC
Merendino L., Courtois F., Grübler B., Bastien O., Straetmanns V., Chevalier F., Lerbs-Mache S., Lurin C., Pfannschmidt T. Retrograde signals from mitochondria reprogramme skoto-morphogenesis in Arabidopsis thaliana via alternative oxidase 1a. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190567. doi: 10.1098/rstb.2019.0567. PubMed DOI PMC
Suzuki H., Rodriguez-Uribe L., Xu J., Zhang J. Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton. Plant Cell Rep. 2013;32:1531–1542. doi: 10.1007/s00299-013-1465-7. PubMed DOI
Niazi A.K., Delannoy E., Iqbal R.K., Mileshina D., Val R., Gabryelska M., Wyszko E., Taconnat L., Szymanski M., Barciszewski J., et al. Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells. 2019;8:583. doi: 10.3390/cells8060583. PubMed DOI PMC
Zheng B.-B., Wu X.-M., Ge X.-X., Deng X.-X., Grosser J.W., Guo W.-W. Comparative Transcript Profiling of a Male Sterile Cybrid Pummelo and Its Fertile Type Revealed Altered Gene Expression Related to Flower Development. PLoS ONE. 2012;7:e43758. doi: 10.1371/journal.pone.0043758. PubMed DOI PMC
Hamid R., Jacob F., Marashi H., Rathod V., Tomar R.S. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.) Genomics. 2020;112:3354–3364. doi: 10.1016/j.ygeno.2020.06.027. PubMed DOI
Colombatti F., Gonzalez D.H., Welchen E. Plant mitochondria under pathogen attack: A sigh of relief or a last breath? Mitochondrion. 2014;19:238–244. doi: 10.1016/j.mito.2014.03.006. PubMed DOI