Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris

. 2012 ; 7 (2) : e30401. [epub] 20120227

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid22383961

Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

Zobrazit více v PubMed

Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. The Plant Cell. 2004;16:S154–S169. PubMed PMC

Katju V, Lynch M. On the formation of novel genes by duplication in the caenorhabditis elegans genome. Molecular Biology and Evolution. 2006;23:1056–1067. PubMed

Rogers RL, Bedford T, Hardl DL. Formation and Longevity of Chimeric and Duplicate Genes in Drosophila melanogaster. Genetics. 2009;181:313–322. PubMed PMC

Wang ZH, Zou YJ, Li XY, Zhang QY, Chen L, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. The Plant Cell. 2006;18:676–687. PubMed PMC

Dewey RE, Timothy DH, Levings CS., III A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proceedings of the National Academy of Sciences USA. 1987;84:5374–5378. PubMed PMC

Cho Y, Mower JP, Qiu YL, Palmer JD. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences, USA. 2004;101:17741–17746. PubMed PMC

Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science. 2006;311:1727–1730. PubMed

Palmer JD, Herbon LA. Plant Mitochondrial-Dna Evolves Rapidly In Structure, But Slowly In Sequence. Journal of Molecular Evolution. 1989;28:87–97. PubMed

Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, USA. 1987;84:9054–9058. PubMed PMC

Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, et al. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics. 2007;177:1173–1192. PubMed PMC

Darracq A, Varre JS, Touzet P. A scenario of mitochondrial genome evolution in maize based on rearrangement events. BMC Genomics. 2010;11:233. PubMed PMC

Fragoso LL, Nochols SE, Levings CS. Rearrangements in maize mitochondrial genes. Genome. 1989;31:160–168.

Kubo T, Newton KJ. Angiosperm mitochondrial genomes and mutations. Mitochondrion. 2008;8:5–14. PubMed

Newton KJ. Plant mitochondrial genomes: organization, expression and variation. Annual Review of Plant Physiology and Plant Molecular Biology. 1988;39:503–532.

Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genetics. 1997;15:57–61. PubMed

Manchekar M, Scissum-Gunn KD, Hammett LA, Backert S, Nielsen BL. Mitochondrial recombination in Brassica campestris. Plant Science. 2009;177:629–635.

Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, et al. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Molecular Genetics and Genomics. 2005;272:603–615. PubMed

Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA. Diversity of the Arabidopsis Mitochondrial Genome Occurs via Nuclear-Controlled Recombination Activity. Genetics. 2009;183:1261–1268. PubMed PMC

Shedge V, Arrieta-Montiel MP, Christensen AC, Mackenzie SA. Plant mitochondrial recombination surveillance requires novel RecA and MutS homologs. The Plant Cell. 2007;19:1251–1264. PubMed PMC

Woloszynska M, Trojanowski D. Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Molecular Biology. 2009;70:511–521. PubMed

Terachi T, Yamaguchi K, Yamagishi H. Sequence analysis on the mitochondrial orfB locus in normal and Ogura male-sterile cytoplasms from wild and cultivated radishes. Current Genetics. 2001;40:276–281. PubMed

Touzet P, Delph LF. The effect of breeding system on polymorphism in mitochondrial genes of Silene. Genetics. 2009;181:631–644. PubMed PMC

Handa H, Gualberto JM, Grienenberg JM. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the Polima male-sterile cytoplasm in rapeseed (Brassica napus L.) Current Genetics. 1995;28:546–552. PubMed

Tang HV, Pring DR, Shaw LC, Salazar RA, Muza FR, et al. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. The Plant Journal. 1996;10:123–133. PubMed

Correns C. Die Vererbung der Geschlechstsformen bei den gynodiöcischen Pflanzen. Berlin Dtsch Bot Ges. 1906;24:459–474.

McCauley DE, Olson MS. Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict ? Evolution. 2008;62:1013–1025. PubMed

Elansary HO, Müller K, Olson MS, Storchova H. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris. BMC Plant Biology. 2010;10:11. PubMed PMC

Olson MS, McCauley DE. Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris. Evolution. 2002;56:253–262. PubMed

Sloan DB, Oxelman B, Rautenberg A, Taylor DR. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evolutionary Biology. 2009;9:260. PubMed PMC

Olson MS, Graf AV, Niles KR. Fine scale spatial structuring of sex and mitochondria in Silene vulgaris. Journal of Evolutionary Biology. 2006;19:1190–1201. PubMed

Storchova H, Olson MS. Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris. Molecular Ecology. 2004;13:2909–2919. PubMed

McCauley DE, Olson MS. Associations among cytoplasmic molecular markers, gender, and components of fitness in Silene vulgaris, a gynodioecious plant. Molecular Ecology. 2003;12:777–787. PubMed

Storchova H, Hrdličková R, Chrtek JJ, Tetera M, Fitze D, et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon. 2000;49:79–84.

Libus J, Storchova H. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. BioTechniques. 2006;41:156–164. PubMed

Triglia T, Peterson MG, Kemp DJ. A procedure for in vtro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Research. 1988;16:8186–8186. PubMed PMC

Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion: The University of Texas at Austin.

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology. 2003;52:696–704. PubMed

Posada D, Crandall KA, Holmes EC. Recombination in evolutionary genomics. Annual Review of Genetics. 2002;36:75–97. PubMed

Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, USA. 1981;78:454–458. PubMed PMC

Swofford DL. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 2002.

Kishino H, Hasegawa M. Evaluation of the maximum-likelihood estimate of the evolutionary tree topologies from DNA-sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution. 1989;29:170–179. PubMed

Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution. 1999;16:1114–1116.

Hazle T, Bonen L. Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants. Molecular Biology and Evolution. 2007;24:1101–1112. PubMed

Houliston GJ, Olson MS. Nonneutral evolution of organelle genes in Silene vulgaris. Genetics. 2006;174:1983–1994. PubMed PMC

Sloan DB, Barr CM, Olson MS, Keller SR, Taylor DR. Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Molecular Biology and Evolution. 2008;25:243–246. PubMed

Hao WL, Palmer JD. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proceedings of the National Academy of Sciences, USA. 2009;106:16728–16733. PubMed PMC

Archibald JM, Richards TA. Gene transfer: anything goes in plant mitochondria. BMC Biology. 2010;8 PubMed PMC

Hao W, Richardson AO, Zheng Y, Palmer JD. Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proceedings of the National Academy of Sciences, USA. 2010;107:21576–21581. PubMed PMC

Sloan DB, Alverson AJ, Storchova H, Palmer JD, Taylor DR. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evolutionary Biology. 2010;10 PubMed PMC

Feng X, Kaur AP, Mackenzie SA, Dweikat IM. Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theoretical and Applied Genetics. 2009;118:1361–1370. PubMed

Bonen L, Boer PH, Gray MW. The wheat cytochrome oxidase subunit II gene has an intron insert and three radical amino acid changes relative to maize. The EMBO Journal. 1984;3:2531–2536. PubMed PMC

Gualberto JM, Bonnard G, Lamattina L, Grienenberger JM. Expression of the wheat mitochondrial nad3-rps12 transcription unit: Correlation between editing and mRNA maturation. The Plant Cell. 1991;3:1109–1120. PubMed PMC

Young EG, Hanson MR. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell. 1987;50:41–49. PubMed

Pearl SA, Welch ME, McCauley DE. Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant. Molecular Biology and Evolution. 2009;26:537–545. PubMed

Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, et al. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Research. 2000;28:2571–2576. PubMed PMC

Satoh M, Kubo T, Mikami T. The Owen mitochondrial genome in sugar beet (Beta vulgaris L.): possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions. Theoretical and Applied Genetics. 2006;113:477–484. PubMed

Satoh M, Kubo T, Nishizawa S, Estiati A, Itchoda N, et al. The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Molecular Genetics and Genomics. 2004;272:247–256. PubMed

Fuji S, Toriyama K. Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proceedings of the National Academy of Sciences, USA. 2009;106:9513–9518. PubMed PMC

Hanson MR, Wilson RK, Bentolila S, Kohler RH, Chen HC. Mitochondrial gene organization and expression in petunia male fertile and sterile plants. Journal of Heredity. 1999;90:362–368. PubMed

Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nature Genetics. 2007;39:1151–1155. PubMed

Hedgcoth C, El-Shehawi AM, Wei P, Clarkson M, Tamalis D. A chimeric open reading frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley, and rye. Current Genetics. 2002;41:357–365. PubMed

Case AL, Willis JH. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement. Evolution. 2008;62:1026–1039. PubMed

Bentley KE, Mandel JR, McCauley DE. Paternal Leakage and Heteroplasmy of Mitochondrial Genomes in Silene vulgaris: Evidence From Experimental Crosses. Genetics. 2010;185:961–968. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...