The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
- MeSH
- RNA Editing genetics MeSH
- Genome, Mitochondrial genetics MeSH
- Mitochondria genetics MeSH
- Plants genetics MeSH
- Sequence Analysis, RNA methods MeSH
- Transcriptome genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
We review current studies of plant mitochondrial transcriptomes performed by RNA-seq, highlighting methodological challenges unique to plant mitochondria. We propose ways to improve read mapping accuracy and sensitivity such as modifying a reference genome at RNA editing sites, using splicing- and ambiguity-competent aligners, and masking chloroplast- or nucleus-derived sequences. We also outline modified RNA-seq methods permitting more accurate detection and quantification of partially edited sites and the identification of transcription start sites on a genome-wide scale. The application of RNA-seq goes beyond genome-wide determination of transcript levels and RNA maturation events, and emerges as an elegant resource for the comprehensive identification of editing, splicing, and transcription start sites. Thus, improved RNA-seq methods customized for plant mitochondria hold tremendous potential for advancing our understanding of plant mitochondrial evolution and cyto-nuclear interactions in a broad array of plant species.
See more in PubMed
Mitochondrion. 2014 Nov;19 Pt B:135-43 PubMed
BMC Plant Biol. 2010 Mar 02;10:39 PubMed
Mol Gen Genet. 1999 Sep;262(2):283-90 PubMed
Mitochondrion. 2014 Nov;19 Pt B:191-7 PubMed
Bioinformatics. 2013 Jan 1;29(1):15-21 PubMed
Nucleic Acids Res. 2002 Jan 15;30(2):439-46 PubMed
Nucleic Acids Res. 2011 Apr;39(7):2890-902 PubMed
BMC Genomics. 2014 Jan 17;15:31 PubMed
Nucleic Acids Res. 2010 Aug;38(14):4755-67 PubMed
Curr Genet. 1995 Nov;28(6):546-52 PubMed
Mitochondrion. 2013 Mar;13(2):87-95 PubMed
PLoS One. 2012;7(5):e37164 PubMed
Plant Mol Biol. 2013 Mar;81(4-5):495-505 PubMed
BMC Genomics. 2013 Aug 07;14:536 PubMed
RNA. 2013 Jun;19(6):725-32 PubMed
BMC Plant Biol. 2014 Feb 10;14:45 PubMed
Genetics. 2010 Aug;185(4):1369-80 PubMed
BMC Genomics. 2011 Jun 01;12:279 PubMed
Plant Mol Biol. 2006 May;61(1-2):1-12 PubMed
Curr Genet. 2001 Dec;40(4):276-81 PubMed
Plant J. 2005 May;42(4):469-80 PubMed
Nucleic Acids Res. 2005 Jan 13;33(1):337-46 PubMed
Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11090-5 PubMed
Nucleic Acids Res. 2012 Sep;40(16):e127 PubMed
Nucleic Acids Res. 2005 Aug 17;33(15):4673-82 PubMed
Cell Mol Life Sci. 2011 Feb;68(4):567-86 PubMed
BMC Biol. 2013 Apr 15;11:29 PubMed
BMC Genomics. 2013 Mar 23;14:202 PubMed
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W253-9 PubMed
Heredity (Edinb). 2013 Oct;111(4):314-20 PubMed
PLoS One. 2014 Mar 05;9(3):e90581 PubMed
Curr Genet. 2010 Oct;56(5):439-46 PubMed
Nat Genet. 2011 May;43(5):491-8 PubMed
Plant Cell. 2012 Jan;24(1):123-36 PubMed
Plant Cell Physiol. 2013 Sep;54(9):1560-8 PubMed
PLoS Genet. 2013 Jun;9(6):e1003584 PubMed
EMBO J. 1999 Jul 1;18(13):3757-66 PubMed
Bioinformatics. 2010 Apr 1;26(7):873-81 PubMed
PLoS One. 2008 Aug 06;3(8):e2889 PubMed
Nat Methods. 2012 Mar 04;9(4):357-9 PubMed
Proc Natl Acad Sci U S A. 1981 Apr;78(4):2407-11 PubMed
Mol Biol Evol. 2008 Jan;25(1):52-61 PubMed
Mitochondrion. 2014 Nov;19 Pt B:282-8 PubMed
Cell. 2011 Aug 19;146(4):645-58 PubMed
Nat Commun. 2013;4:2247 PubMed
Plant J. 2010 Dec;64(6):948-59 PubMed
Genome Biol. 2013 Apr 25;14(4):R36 PubMed
PLoS Biol. 2012 Jan;10(1):e1001241 PubMed
New Phytol. 2013 Dec;200(4):978-85 PubMed
FEBS Lett. 2013 May 2;587(9):1429-33 PubMed
Nat Biotechnol. 2008 Aug;26(8):941-6 PubMed
Nucleic Acids Res. 2012 Apr;40(7):3106-16 PubMed
Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 PubMed
BMC Evol Biol. 2010 Sep 10;10:274 PubMed
Annu Rev Genet. 2000;34:499-531 PubMed
Nucleic Acids Res. 2007;35(11):3676-92 PubMed
Genome Biol. 2012 Oct 03;13(10):R82 PubMed
PLoS One. 2012;7(2):e30401 PubMed
Evolution. 2008 May;62(5):1026-39 PubMed
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):992-7 PubMed
The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants
Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris