High transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora

. 2015 Nov 14 ; 16 () : 938. [epub] 20151114

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26573088
Odkazy

PubMed 26573088
PubMed Central PMC4647634
DOI 10.1186/s12864-015-2155-3
PII: 10.1186/s12864-015-2155-3
Knihovny.cz E-zdroje

BACKGROUND: Species within the angiosperm genus Silene contain the largest mitochondrial genomes ever identified. The enormity of these genomes (up to 11 Mb in size) appears to be the result of increased non-coding DNA, which represents >99 % of the genome content. These genomes are also fragmented into dozens of circular-mapping chromosomes, some of which contain no identifiable genes, raising questions about if and how these 'empty' chromosomes are maintained by selection. To assess the possibility that they contain novel and unannotated functional elements, we have performed RNA-seq to analyze the mitochondrial transcriptome of Silene noctiflora. RESULTS: We identified regions of high transcript abundance in almost every chromosome in the mitochondrial genome including those that lack any annotated genes. In some cases, these transcribed regions exhibited higher expression levels than some core mitochondrial protein-coding genes. We also identified RNA editing sites throughout the genome, including 97 sites that were outside of protein-coding gene sequences and found in pseudogenes, introns, UTRs, and transcribed intergenic regions. Unlike in protein-coding sequences, however, most of these RNA editing sites were only edited at intermediate frequencies. Finally, analysis of mitochondrial small RNAs indicated that most were likely degradation products from longer transcripts, but we did identify candidates for functional small RNAs that mapped to intergenic regions and were not associated with longer RNA transcripts. CONCLUSIONS: Our findings demonstrate transcriptional activity in many localized regions within the extensive intergenic sequence content in the S. noctiflora mitochondrial genome, supporting the possibility that the genome contains previously unidentified functional elements. However, transcription by itself is not proof of functional importance, and we discuss evidence that some of the observed transcription and post-transcriptional modifications are non-adaptive. Therefore, further investigations are required to determine whether any of the identified transcribed regions have played a functional role in the proliferation and maintenance of the enormous non-coding regions in Silene mitochondrial genomes.

Zobrazit více v PubMed

Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol. 1972;23:366–70. PubMed

ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. PubMed DOI PMC

Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of encode. Genome Biol Evol. 2013;5:578–90. doi: 10.1093/gbe/evt028. PubMed DOI PMC

Doolittle WF. Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A. 2013;110:5294–300. doi: 10.1073/pnas.1221376110. PubMed DOI PMC

Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014;111:6131–38. doi: 10.1073/pnas.1318948111. PubMed DOI PMC

Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science. 2006;311:1727–30. doi: 10.1126/science.1118884. PubMed DOI

Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of citrullus lanatus and cucurbita pepo (cucurbitaceae) Mol Biol Evol. 2010;27:1436–48. doi: 10.1093/molbev/msq029. PubMed DOI PMC

Smith DR, Lee RW. Low nucleotide diversity for the expanded organelle and nuclear genomes of volvox carteri supports the mutational-hazard hypothesis. Mol Biol Evol. 2010;27:2244–56. doi: 10.1093/molbev/msq110. PubMed DOI

Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10:e1001241. doi: 10.1371/journal.pbio.1001241. PubMed DOI PMC

Skippington E, Barkman TJ, Rice DW, Palmer JD. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A. 2015;112:E3515–24. doi: 10.1073/pnas.1504491112. PubMed DOI PMC

Lang BF, Gray MW, Burger G. Mitochondrial Genome Evolution and the Origin of Eukaryotes. Annu Rev Genet. 1999;33:351–97. doi: 10.1146/annurev.genet.33.1.351. PubMed DOI

Mower J, Sloan D, Alverson A. Plant mitochondrial genome diversity: the genomics revolution. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ, editors. Plant genome diversity. Vienna: Springer; 2012. pp. 123–144.

Lilly JW, Havey MJ. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics. 2001;159:317–28. PubMed PMC

Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, et al. Comparisons among Two fertile and three male-sterile mitochondrial genomes of maize. Genetics. 2007;177:1173–92. doi: 10.1534/genetics.107.073312. PubMed DOI PMC

Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD. Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell. 2011;23:2499–513. doi: 10.1105/tpc.111.087189. PubMed DOI PMC

Ellis J. Promiscuous DNA[mdash]chloroplast genes inside plant mitochondria. Nature. 1982;299:678–9. doi: 10.1038/299678a0. PubMed DOI

Goremykin VV, Lockhart PJ, Viola R, Velasco R. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. Plant J. 2012;71:615–26. doi: 10.1111/j.1365-313X.2012.05014.x. PubMed DOI

Sloan DB, Wu Z. History of Plastid DNA Insertions Reveals Weak Deletion and AT Mutation Biases in Angiosperm Mitochondrial Genomes. Genome Biol Evol. 2014;6:3210–21. doi: 10.1093/gbe/evu253. PubMed DOI PMC

Bergthorsson U, Adams KL, Thomason B, Palmer JD. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature. 2003;424:197–201. doi: 10.1038/nature01743. PubMed DOI

Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science. 2013;342:1468–73. doi: 10.1126/science.1246275. PubMed DOI

Park S, Grewe F, Zhu A, Ruhlman TA, Sabir J, Mower JP, et al. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers. New Phytol. 2015;208:570–83. doi: 10.1111/nph.13467. PubMed DOI

Wu Z, Cuthbert JM, Taylor DR, Sloan DB. The massive mitochondrial genome of the angiosperm Silene noctiflora is evolving by gain or loss of entire chromosomes. Proc Natl Acad Sci U S A. 2015;112:10185–91. doi: 10.1073/pnas.1421397112. PubMed DOI PMC

Lung B, Zemann A, Madej MJ, Schuelke M, Techritz S, Ruf S, et al. Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res. 2006;34:3842–52. doi: 10.1093/nar/gkl448. PubMed DOI PMC

Wang L, Yu X, Wang H, Lu YZ, de Ruiter M, Prins M, et al. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa) BMC Genomics. 2011;12:289. doi: 10.1186/1471-2164-12-289. PubMed DOI PMC

Hotto AM, Schmitz RJ, Fei Z, Ecker JR, Stern DB. Unexpected Diversity of Chloroplast Noncoding RNAs as Revealed by Deep Sequencing of the Arabidopsis Transcriptome. G3 Genes, Genomes. Genet. 2011;1:559–70. PubMed PMC

Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013;23:759–74. doi: 10.1038/cr.2013.37. PubMed DOI PMC

Dietrich A, Wallet C, Iqbal RK, Gualberto JM, Lotfi F. Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie. 2015;117:48–62. doi: 10.1016/j.biochi.2015.06.027. PubMed DOI

Megel C, Morelle G, Lalande S, Duchêne AM, Small I, Maréchal-Drouard L. Surveillance and cleavage of eukaryotic tRNAs. Int J Mol Sci. 2015;16:1873–93. doi: 10.3390/ijms16011873. PubMed DOI PMC

Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 1998;3:175–80. doi: 10.1016/S1360-1385(98)01235-7. DOI

Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavalier-Smith T, et al. A coral mitochondrial mutS gene. Nature. 1995;375:109–11. doi: 10.1038/375109b0. PubMed DOI

Pont-Kingdon GA, Okada NA, Macfarlane JL, Timothy Beagley C, Watkins-Sims CD, Cavalier-Smith T, et al. Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: A possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol. 1998;46:419–31. doi: 10.1007/PL00006321. PubMed DOI

Bilewitch JP, Degnan SM. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol Biol. 2011;11:228. doi: 10.1186/1471-2148-11-228. PubMed DOI PMC

Milani L, Ghiselli F, Guerra D, Breton S, Passamonti M. A comparative analysis of mitochondrial ORFans: New clues on their origin and role in species with Doubly Uniparental Inheritance of mitochondria. Genome Biol Evol. 2013;5:1408–34. doi: 10.1093/gbe/evt101. PubMed DOI PMC

Milani L, Ghiselli F, Maurizii MG, Nuzhdin SV, Passamonti M. Paternally Transmitted Mitochondria Express a New Gene of Potential Viral Origin. Genome Biol Evol. 2014;6:391–405. doi: 10.1093/gbe/evu021. PubMed DOI PMC

Stone J, Storchova H. The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes. Mol Genet Genomics. 2015;290:1–9. doi: 10.1007/s00438-014-0905-6. PubMed DOI

Fang Y, Wu H, Zhang T, Yang M, Yin Y, Pan L, et al. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One. 2012;7:e37164. doi: 10.1371/journal.pone.0037164. PubMed DOI PMC

Grewe F, Edger PP, Keren I, Sultan L, Pires JC, Ostersetzer-Biran O, et al. Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion. 2014;19:135–43. doi: 10.1016/j.mito.2014.05.008. PubMed DOI

Grimes BT, Sisay AK, Carroll HD, Cahoon AB. Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions. BMC Genomics. 2014;15:31. doi: 10.1186/1471-2164-15-31. PubMed DOI PMC

Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G. Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. Nucleic Acids Res. 2010;38:4755–67. doi: 10.1093/nar/gkq202. PubMed DOI PMC

Guo W, Grewe F, Mower JP. Variable Frequency of Plastid RNA Editing among Ferns and Repeated Loss of Uridine-to-Cytidine Editing from Vascular Plants. PLoS One. 2015;10:e0117075. doi: 10.1371/journal.pone.0117075. PubMed DOI PMC

Qiu Y, Filipenko SJ, Darracq A, Adams KL. Expression of a transferred nuclear gene in a mitochondrial genome. Curr Plant Biol. 2014;1:6–10.

Raczynska KD, Le Ret M, Rurek M, Bonnard G, Augustyniak H, Gualberto JM. Plant mitochondrial genes can be expressed from mRNAs lacking stop codons. FEBS Lett. 2006;580:5641–6. doi: 10.1016/j.febslet.2006.09.010. PubMed DOI

Forner J, Weber B, Thuss S, Wildum S, Binder S. Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: T-elements contribute to 5’ and 3’ end formation. Nucleic Acids Res. 2007;35:3676–92. doi: 10.1093/nar/gkm270. PubMed DOI PMC

Müller K, Storchova H. Transcription of atp1 is influenced by both genomic configuration and nuclear background in the highly rearranged mitochondrial genomes of Silene vulgaris. Plant Mol Biol. 2013;81:495–505. doi: 10.1007/s11103-013-0018-3. PubMed DOI

Dombrowski S, Brennicke A, Binder S. 3’‐Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J. 1997;16:5069–76. doi: 10.1093/emboj/16.16.5069. PubMed DOI PMC

Kuhn J, Tengler U, Binder S. Transcript Lifetime Is Balanced between Stabilizing Stem-Loop Structures and Degradation-Promoting Polyadenylation in Plant Mitochondria. Mol Cell Biol. 2001;21:731–42. doi: 10.1128/MCB.21.3.731-742.2001. PubMed DOI PMC

Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR. Extensive Loss of RNA Editing Sites in Rapidly Evolving Silene Mitochondrial Genomes: Selection vs Retroprocessing as the Driving Force. Genetics. 2010;185:1369–80. doi: 10.1534/genetics.110.118000. PubMed DOI PMC

Sanchez-Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. New Phytol. 2015;206:381–96. doi: 10.1111/nph.13188. PubMed DOI PMC

Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A. RNA Editing in Plants and Its Evolution. Annu Rev Genet. 2013;47:335–52. doi: 10.1146/annurev-genet-111212-133519. PubMed DOI

Tracy R, Stern D. Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet. 1995;28:205–16. doi: 10.1007/BF00309779. PubMed DOI

Kühn K, Weihe A, Börner T. Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res. 2005;33:337–46. doi: 10.1093/nar/gki179. PubMed DOI PMC

Holec S, Lange H, Canaday J, Gagliardi D. Coping with cryptic and defective transcripts in plant mitochondria. Biochim Biophys Acta-Gene Regul Mech. 2008;1779:566–73. doi: 10.1016/j.bbagrm.2008.02.004. PubMed DOI

Gualberto JM, Kühn K. DNA-binding proteins in plant mitochondria: Implications for transcription. Mitochondrion. 2014;19:323–28. doi: 10.1016/j.mito.2014.02.004. PubMed DOI

Mower JP. PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics. 2005;6:96. doi: 10.1186/1471-2105-6-96. PubMed DOI PMC

Mower J, Palmer J. Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Genet Genomics. 2006;276:285–93. doi: 10.1007/s00438-006-0139-3. PubMed DOI

Rüdinger M, Funk H, Rensing S, Maier U, Knoop V. RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics. 2009;281:473–81. doi: 10.1007/s00438-009-0424-z. PubMed DOI

Finnegan PM, Brown GG. Transcriptional and Post-Transcriptional Regulation of RNA Levels in Maize Mitochondria. Plant Cell. 1990;2:71–83. doi: 10.1105/tpc.2.1.71. PubMed DOI PMC

Fujii S, Toda T, Kikuchi S, Suzuki R, Yokoyama K, Tsuchida H, et al. Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions. BMC Genomics. 2011;12:279. doi: 10.1186/1471-2164-12-279. PubMed DOI PMC

Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood A-MJ, et al. The Human Mitochondrial Transcriptome. Cell. 2011;146:645–58. doi: 10.1016/j.cell.2011.06.051. PubMed DOI PMC

Sripada L, Tomar D, Singh R. Mitochondria: One of the destinations of miRNAs. Mitochondrion. 2012;12:593–99. doi: 10.1016/j.mito.2012.10.009. PubMed DOI

Gray MW. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A. 2015;112:10133–38. doi: 10.1073/pnas.1421379112. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–20. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Meth. 2012;9:357–9. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes1. J Mol Biol. 2001;305:567–80. doi: 10.1006/jmbi.2000.4315. PubMed DOI

Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotech. 2011;29:24–6. doi: 10.1038/nbt.1754. PubMed DOI PMC

Zobrazit více v PubMed

SRA
SRX1153098, SRX1153129, SRX1153130, SRX1153131

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...