Transcription of atp1 is influenced by both genomic configuration and nuclear background in the highly rearranged mitochondrial genomes of Silene vulgaris

. 2013 Mar ; 81 (4-5) : 495-505. [epub] 20130130

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23361622

An extraordinary variation in mitochondrial DNA sequence exists in angiosperm Silene vulgaris. The atp1 gene is flanked by very variable regions, as deduced from four completely sequenced mitochondrial genomes of this species. This diversity contributed to a highly variable transcript profile of this gene observed across S. vulgaris populations. We examined the atp1 transcript in the KOV mitochondrial genome and found three 5' ends, created most likely by the combination of transcription initiation and RNA processing. Most atp1 transcripts terminated about 70 bp upstream of the translation stop codon, which was present in only 10 % of them. Controlled crosses between a KOV mother and a geographically distant pollen donor (Krasnoyarsk, Russia) showed that nuclear background also affected atp1 transcription. The distant pollen donor introduced the factor(s) preventing the formation of a long 2,100 nt-transcript, because this long atp1 transcript reappeared in the progeny from self-crosses. The highly rearranged mitochondrial genomes with a variation in gene flanking regions make S. vulgaris an excellent model for the study of mitochondrial gene expression in plants.

Zobrazit více v PubMed

BMC Plant Biol. 2010 Jan 13;10:11 PubMed

Genetics. 2009 Feb;181(2):631-44 PubMed

Plant Physiol. 2008 Oct;148(2):1106-16 PubMed

Biochim Biophys Acta. 2008 Sep;1779(9):566-73 PubMed

Plant Physiol. 2012 Feb;158(2):996-1017 PubMed

Nucleic Acids Res. 2005 Aug 17;33(15):4673-82 PubMed

EMBO J. 1997 Aug 15;16(16):5069-76 PubMed

J Biol Chem. 1999 Apr 9;274(15):10094-9 PubMed

Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054-8 PubMed

Mol Genet Genomics. 2008 Nov;280(5):419-26 PubMed

Plant Cell. 2004;16 Suppl:S154-69 PubMed

PLoS Biol. 2012 Jan;10(1):e1001241 PubMed

Nucleic Acids Res. 2002 Jan 15;30(2):439-46 PubMed

Evolution. 2002 Feb;56(2):253-62 PubMed

Mol Genet Genomics. 2002 Dec;268(4):434-45 PubMed

Int Rev Cytol. 1999;190:1-59 PubMed

Plant Physiol. 2011 Nov;157(3):1430-9 PubMed

Mol Ecol. 2004 Oct;13(10):2909-19 PubMed

Genome Biol Evol. 2011;3:723-36 PubMed

Curr Genet. 1991 Aug;20(3):245-51 PubMed

Mol Ecol Resour. 2012 Mar;12(2):333-43 PubMed

J Biol Chem. 1999 Feb 5;274(6):3897-903 PubMed

Genetics. 2006 Dec;174(4):1983-94 PubMed

Nucleic Acids Res. 2005 Jan 13;33(1):337-46 PubMed

Mol Biol Evol. 2007 May;24(5):1101-12 PubMed

Mol Phylogenet Evol. 2008 Dec;49(3):827-31 PubMed

Trends Plant Sci. 2008 Dec;13(12):663-70 PubMed

Genetics. 2007 Oct;177(2):1173-92 PubMed

Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 PubMed

Plant Mol Biol. 1996 Oct;32(1-2):303-14 PubMed

Plant Cell. 2010 Feb;22(2):443-53 PubMed

Proc Natl Acad Sci U S A. 1988 Nov;85(21):7998-8002 PubMed

BMC Genomics. 2011 Jul 26;12:376 PubMed

EMBO J. 1992 Mar;11(3):1065-73 PubMed

BMC Evol Biol. 2010 Sep 10;10:274 PubMed

Heredity (Edinb). 2009 Jul;103(1):5-14 PubMed

Nucleic Acids Res. 2007;35(11):3676-92 PubMed

FEBS Lett. 2006 Oct 16;580(24):5641-6 PubMed

J Biotechnol. 2003 Sep 4;104(1-3):325-34 PubMed

New Phytol. 2012 Dec;196(4):1228-1239 PubMed

PLoS One. 2012;7(2):e30401 PubMed

Nucleic Acids Res. 2003 Oct 15;31(20):5907-16 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...