• This record comes from PubMed

LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion

. 2019 Jun 18 ; 9 (1) : 8697. [epub] 20190618

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31213632
PubMed Central PMC6581912
DOI 10.1038/s41598-019-45079-1
PII: 10.1038/s41598-019-45079-1
Knihovny.cz E-resources

The mechanism of action of various viruses has been the primary focus of many studies. Yet, the data on RNA modifications in any type of virus are scarce. Methods for the sensitive analysis of RNA modifications have been developed only recently and they have not been applied to viruses. In particular, the RNA composition of HIV-1 virions has never been determined with sufficiently exact methods. Here, we reveal that the RNA of HIV-1 virions contains surprisingly high amount of the 1-methyladenosine. We are the first to use a liquid chromatography-mass spectrometry analysis (LC/MS) of virion RNA, which we combined with m1A profiling and deep sequencing. We found that m1A was present in the tRNA, but not in the genomic HIV-1 RNA and the abundant 7SL RNA. We were able to calculate that an HIV-1 virion contains per 2 copies of genomic RNA and 14 copies of 7SL RNA also 770 copies of tRNA, which is approximately 10 times more than thus far expected. These new insights into the composition of the HIV-1 virion can help in future studies to identify the role of nonprimer tRNAs in retroviruses. Moreover, we present a promising new tool for studying the compositions of virions.

See more in PubMed

Helm M, Alfonzo JD. Posttranscriptional RNA Modifications: Playing Metabolic Games in a Cell’s Chemical Legoland. Chemistry &. Biology. 2014;21:174–185. doi: 10.1016/j.chembiol.2013.10.015. PubMed DOI PMC

Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nature Reviews Genetics. 2017;18:275. doi: 10.1038/nrg.2016.169. PubMed DOI

Carlile Thomas M., Rojas-Duran Maria F., Zinshteyn Boris, Shin Hakyung, Bartoli Kristen M., Gilbert Wendy V. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515(7525):143–146. doi: 10.1038/nature13802. PubMed DOI PMC

Schwartz S, et al. Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148–162. doi: 10.1016/j.cell.2014.08.028. PubMed DOI PMC

Squires JE, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research. 2012;40:5023–5033. doi: 10.1093/nar/gks144. PubMed DOI PMC

Sakurai Masayuki, Yano Takanori, Kawabata Hitomi, Ueda Hiroki, Suzuki Tsutomu. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nature Chemical Biology. 2010;6(10):733–740. doi: 10.1038/nchembio.434. PubMed DOI

Cahová Hana, Winz Marie-Luise, Höfer Katharina, Nübel Gabriele, Jäschke Andres. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2014;519(7543):374–377. doi: 10.1038/nature14020. PubMed DOI

Walters RW, et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2017;114:480–485. doi: 10.1073/pnas.1619369114. PubMed DOI PMC

Jiao X, et al. 5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Cell. 2017;168:1015–1027.e1010. doi: 10.1016/j.cell.2017.02.019. PubMed DOI PMC

Dominissini Dan, Moshitch-Moshkovitz Sharon, Schwartz Schraga, Salmon-Divon Mali, Ungar Lior, Osenberg Sivan, Cesarkas Karen, Jacob-Hirsch Jasmine, Amariglio Ninette, Kupiec Martin, Sorek Rotem, Rechavi Gideon. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–206. doi: 10.1038/nature11112. PubMed DOI

Meyer KD, et al. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell. 2012;149:1635–1646. doi: 10.1016/j.cell.2012.05.003. PubMed DOI PMC

Dominissini Dan, Nachtergaele Sigrid, Moshitch-Moshkovitz Sharon, Peer Eyal, Kol Nitzan, Ben-Haim Moshe Shay, Dai Qing, Di Segni Ayelet, Salmon-Divon Mali, Clark Wesley C., Zheng Guanqun, Pan Tao, Solomon Oz, Eyal Eran, Hershkovitz Vera, Han Dali, Doré Louis C., Amariglio Ninette, Rechavi Gideon, He Chuan. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441–446. doi: 10.1038/nature16998. PubMed DOI PMC

Zhang C, Jia G, Reversible RNA. Modification N1-methyladenosine (m1A) in mRNA and tRNA. Genomics, Proteomics &. Bioinformatics. 2018;16:155–161. doi: 10.1016/j.gpb.2018.03.003. PubMed DOI PMC

Safra Modi, Sas-Chen Aldema, Nir Ronit, Winkler Roni, Nachshon Aharon, Bar-Yaacov Dan, Erlacher Matthias, Rossmanith Walter, Stern-Ginossar Noam, Schwartz Schraga. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551(7679):251–255. doi: 10.1038/nature24456. PubMed DOI

Gokhale NS, et al. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host & Microbe. 2016;20:654–665. doi: 10.1016/j.chom.2016.09.015. PubMed DOI PMC

Kennedy EM, et al. Posttranscriptional m6A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. Cell Host & Microbe. 2016;19:675–685. doi: 10.1016/j.chom.2016.04.002. PubMed DOI PMC

Keene SE, King SR, Telesnitsky A. 7SL RNA Is Retained in HIV-1 Minimal Virus-Like Particles as an S-Domain Fragment. Journal of Virology. 2010;84:9070–9077. doi: 10.1128/jvi.00714-10. PubMed DOI PMC

Telesnitsky A, Wolin S. The Host RNAs in Retroviral Particles. Viruses. 2016;8:235. doi: 10.3390/v8080235. PubMed DOI PMC

Larsen KP, et al. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature. 2018;557:118–122. doi: 10.1038/s41586-018-0055-9. PubMed DOI PMC

Zhang Z, Yu Q, Kang S-M, Buescher J, Morrow CD. Preferential Completion of Human Immunodeficiency Virus Type 1 Proviruses Initiated with tRNA3 Lys rather than tRNA1,2 Lys. Journal of Virology. 1998;72:5464–5471. PubMed PMC

Auxilien S, Keith G, Le Grice SFJ, Darlix J-L. Role of Post-transcriptional Modifications of Primer tRNALys,3 in the Fidelity and Efficacy of Plus Strand DNA Transfer during HIV-1 Reverse Transcription. Journal of Biological Chemistry. 1999;274:4412–4420. doi: 10.1074/jbc.274.7.4412. PubMed DOI

Kleiman L, Jones CP, Musier-Forsyth K. Formation of the tRNALys packaging complex in HIV-1. FEBS Letters. 2010;584:359–365. doi: 10.1016/j.febslet.2009.11.038. PubMed DOI PMC

Bilbille Y, et al. The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Research. 2009;37:3342–3353. doi: 10.1093/nar/gkp187. PubMed DOI PMC

Eckwahl MJ, et al. Analysis of the human immunodeficiency virus-1 RNA packageome. RNA. 2016 doi: 10.1261/rna.057299.116. PubMed DOI PMC

Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL. A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes & Development. 2015;29:646–657. doi: 10.1101/gad.258731.115. PubMed DOI PMC

Schopman NCT, et al. Selective packaging of cellular miRNAs in HIV-1 particles. Virus Research. 2012;169:438–447. doi: 10.1016/j.virusres.2012.06.017. PubMed DOI

Eckwahl, M. J., Telesnitsky, A. & Wolin, S. L. Host RNA Packaging by Retroviruses: A Newly Synthesized Story. mBio7, 10.1128/mBio.02025-15 (2016). PubMed PMC

Berkowitz, R., Fisher, J. & Goff, S. P. In Morphogenesis and Maturation of Retroviruses (ed Hans-Georg Kräusslich) 177–218 (Springer Berlin Heidelberg, 1996).

Bagiński B, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Research. 2017;46:D303–D307. doi: 10.1093/nar/gkx1030. PubMed DOI PMC

Hauenschild R, et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Research. 2015;43:9950–9964. doi: 10.1093/nar/gkv895. PubMed DOI PMC

Tserovski L, et al. High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA. Methods. 2016;107:110–121. doi: 10.1016/j.ymeth.2016.02.012. PubMed DOI

Kietrys AM, Velema WA, Kool ET. Fingerprints of Modified RNA Bases from Deep Sequencing Profiles. Journal of the American Chemical Society. 2017;139:17074–17081. doi: 10.1021/jacs.7b07914. PubMed DOI PMC

Oerum S, Dégut C, Barraud P, Tisné C. m1A Post‐Transcriptional Modification in tRNAs. Biomolecules. 2017;7:20. doi: 10.3390/biom7010020. PubMed DOI PMC

Roovers M, et al. A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. Nucleic Acids Research. 2004;32:465–476. doi: 10.1093/nar/gkh191. PubMed DOI PMC

Narayanan A, et al. Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA. Journal of Biological Chemistry. 2013;288:20014–20033. doi: 10.1074/jbc.M112.438895. PubMed DOI PMC

Wei F-Y, et al. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. The Journal of Clinical Investigation. 2011;121:3598–3608. doi: 10.1172/JCI58056. PubMed DOI PMC

Jiang M, et al. Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1. Journal of Virology. 1993;67:3246–3253. PubMed PMC

Mak J, et al. Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. Journal of Virology. 1994;68:2065–2072. PubMed PMC

Pavon-Eternod M, Wei M, Pan T, Kleiman L. Profiling non-lysyl tRNAs in HIV-1. RNA. 2010;16:267–273. doi: 10.1261/rna.1928110. PubMed DOI PMC

Onafuwa-Nuga AA, Telesnitsky A, King SR. 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. RNA. 2006;12:542–546. doi: 10.1261/rna.2306306. PubMed DOI PMC

McIntyre W, et al. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Research. 2018;46:5776–5791. doi: 10.1093/nar/gky029. PubMed DOI PMC

Yeung ML, et al. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Research. 2009;37:6575–6586. doi: 10.1093/nar/gkp707. PubMed DOI PMC

Schopman NCT, et al. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Research. 2012;40:414–427. doi: 10.1093/nar/gkr719. PubMed DOI PMC

Kutluay SB, et al. Global Changes in the RNA Binding Specificity of HIV-1 Gag Regulate Virion Genesis. Cell. 2014;159:1096–1109. doi: 10.1016/j.cell.2014.09.057. PubMed DOI PMC

Zaitseva L, Myers R, Fassati A. tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes. PLOS Biology. 2006;4:e332. doi: 10.1371/journal.pbio.0040332. PubMed DOI PMC

Li Manqing, Kao Elaine, Gao Xia, Sandig Hilary, Limmer Kirsten, Pavon-Eternod Mariana, Jones Thomas E., Landry Sebastien, Pan Tao, Weitzman Matthew D., David Michael. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012;491(7422):125–128. doi: 10.1038/nature11433. PubMed DOI PMC

Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints12. American Journal of Epidemiology. 1938;27:493–497. doi: 10.1093/oxfordjournals.aje.a118408. DOI

Su D, et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nature Protocols. 2014;9:828. doi: 10.1038/nprot.2014.047. PubMed DOI PMC

Winz Marie-Luise, Cahová Hana, Nübel Gabriele, Frindert Jens, Höfer Katharina, Jäschke Andres. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nature Protocols. 2016;12(1):122–149. doi: 10.1038/nprot.2016.163. PubMed DOI

Martin Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI

Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ. 2017;5:e3720. doi: 10.7717/peerj.3720. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...