LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31213632
PubMed Central
PMC6581912
DOI
10.1038/s41598-019-45079-1
PII: 10.1038/s41598-019-45079-1
Knihovny.cz E-resources
- MeSH
- Adenosine analogs & derivatives metabolism MeSH
- Chromatography, Liquid methods MeSH
- Genome, Viral genetics MeSH
- HIV-1 genetics physiology MeSH
- Mass Spectrometry methods MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- RNA, Small Cytoplasmic genetics MeSH
- RNA, Transfer genetics metabolism MeSH
- RNA, Viral genetics metabolism MeSH
- Base Sequence MeSH
- Virus Assembly genetics MeSH
- Signal Recognition Particle genetics MeSH
- Virion genetics metabolism MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-methyladenosine MeSH Browser
- 7SL RNA MeSH Browser
- Adenosine MeSH
- RNA, Small Cytoplasmic MeSH
- RNA, Transfer MeSH
- RNA, Viral MeSH
- Signal Recognition Particle MeSH
The mechanism of action of various viruses has been the primary focus of many studies. Yet, the data on RNA modifications in any type of virus are scarce. Methods for the sensitive analysis of RNA modifications have been developed only recently and they have not been applied to viruses. In particular, the RNA composition of HIV-1 virions has never been determined with sufficiently exact methods. Here, we reveal that the RNA of HIV-1 virions contains surprisingly high amount of the 1-methyladenosine. We are the first to use a liquid chromatography-mass spectrometry analysis (LC/MS) of virion RNA, which we combined with m1A profiling and deep sequencing. We found that m1A was present in the tRNA, but not in the genomic HIV-1 RNA and the abundant 7SL RNA. We were able to calculate that an HIV-1 virion contains per 2 copies of genomic RNA and 14 copies of 7SL RNA also 770 copies of tRNA, which is approximately 10 times more than thus far expected. These new insights into the composition of the HIV-1 virion can help in future studies to identify the role of nonprimer tRNAs in retroviruses. Moreover, we present a promising new tool for studying the compositions of virions.
1st Faculty of Medicine Charles University Prague 12108 Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague 14220 Czech Republic
University of Chemistry and Technology Prague 16628 Czech Republic
See more in PubMed
Helm M, Alfonzo JD. Posttranscriptional RNA Modifications: Playing Metabolic Games in a Cell’s Chemical Legoland. Chemistry &. Biology. 2014;21:174–185. doi: 10.1016/j.chembiol.2013.10.015. PubMed DOI PMC
Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nature Reviews Genetics. 2017;18:275. doi: 10.1038/nrg.2016.169. PubMed DOI
Carlile Thomas M., Rojas-Duran Maria F., Zinshteyn Boris, Shin Hakyung, Bartoli Kristen M., Gilbert Wendy V. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515(7525):143–146. doi: 10.1038/nature13802. PubMed DOI PMC
Schwartz S, et al. Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148–162. doi: 10.1016/j.cell.2014.08.028. PubMed DOI PMC
Squires JE, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research. 2012;40:5023–5033. doi: 10.1093/nar/gks144. PubMed DOI PMC
Sakurai Masayuki, Yano Takanori, Kawabata Hitomi, Ueda Hiroki, Suzuki Tsutomu. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nature Chemical Biology. 2010;6(10):733–740. doi: 10.1038/nchembio.434. PubMed DOI
Cahová Hana, Winz Marie-Luise, Höfer Katharina, Nübel Gabriele, Jäschke Andres. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2014;519(7543):374–377. doi: 10.1038/nature14020. PubMed DOI
Walters RW, et al. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 2017;114:480–485. doi: 10.1073/pnas.1619369114. PubMed DOI PMC
Jiao X, et al. 5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Cell. 2017;168:1015–1027.e1010. doi: 10.1016/j.cell.2017.02.019. PubMed DOI PMC
Dominissini Dan, Moshitch-Moshkovitz Sharon, Schwartz Schraga, Salmon-Divon Mali, Ungar Lior, Osenberg Sivan, Cesarkas Karen, Jacob-Hirsch Jasmine, Amariglio Ninette, Kupiec Martin, Sorek Rotem, Rechavi Gideon. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–206. doi: 10.1038/nature11112. PubMed DOI
Meyer KD, et al. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell. 2012;149:1635–1646. doi: 10.1016/j.cell.2012.05.003. PubMed DOI PMC
Dominissini Dan, Nachtergaele Sigrid, Moshitch-Moshkovitz Sharon, Peer Eyal, Kol Nitzan, Ben-Haim Moshe Shay, Dai Qing, Di Segni Ayelet, Salmon-Divon Mali, Clark Wesley C., Zheng Guanqun, Pan Tao, Solomon Oz, Eyal Eran, Hershkovitz Vera, Han Dali, Doré Louis C., Amariglio Ninette, Rechavi Gideon, He Chuan. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441–446. doi: 10.1038/nature16998. PubMed DOI PMC
Zhang C, Jia G, Reversible RNA. Modification N1-methyladenosine (m1A) in mRNA and tRNA. Genomics, Proteomics &. Bioinformatics. 2018;16:155–161. doi: 10.1016/j.gpb.2018.03.003. PubMed DOI PMC
Safra Modi, Sas-Chen Aldema, Nir Ronit, Winkler Roni, Nachshon Aharon, Bar-Yaacov Dan, Erlacher Matthias, Rossmanith Walter, Stern-Ginossar Noam, Schwartz Schraga. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551(7679):251–255. doi: 10.1038/nature24456. PubMed DOI
Gokhale NS, et al. N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host & Microbe. 2016;20:654–665. doi: 10.1016/j.chom.2016.09.015. PubMed DOI PMC
Kennedy EM, et al. Posttranscriptional m6A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. Cell Host & Microbe. 2016;19:675–685. doi: 10.1016/j.chom.2016.04.002. PubMed DOI PMC
Keene SE, King SR, Telesnitsky A. 7SL RNA Is Retained in HIV-1 Minimal Virus-Like Particles as an S-Domain Fragment. Journal of Virology. 2010;84:9070–9077. doi: 10.1128/jvi.00714-10. PubMed DOI PMC
Telesnitsky A, Wolin S. The Host RNAs in Retroviral Particles. Viruses. 2016;8:235. doi: 10.3390/v8080235. PubMed DOI PMC
Larsen KP, et al. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature. 2018;557:118–122. doi: 10.1038/s41586-018-0055-9. PubMed DOI PMC
Zhang Z, Yu Q, Kang S-M, Buescher J, Morrow CD. Preferential Completion of Human Immunodeficiency Virus Type 1 Proviruses Initiated with tRNA3 Lys rather than tRNA1,2 Lys. Journal of Virology. 1998;72:5464–5471. PubMed PMC
Auxilien S, Keith G, Le Grice SFJ, Darlix J-L. Role of Post-transcriptional Modifications of Primer tRNALys,3 in the Fidelity and Efficacy of Plus Strand DNA Transfer during HIV-1 Reverse Transcription. Journal of Biological Chemistry. 1999;274:4412–4420. doi: 10.1074/jbc.274.7.4412. PubMed DOI
Kleiman L, Jones CP, Musier-Forsyth K. Formation of the tRNALys packaging complex in HIV-1. FEBS Letters. 2010;584:359–365. doi: 10.1016/j.febslet.2009.11.038. PubMed DOI PMC
Bilbille Y, et al. The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Research. 2009;37:3342–3353. doi: 10.1093/nar/gkp187. PubMed DOI PMC
Eckwahl MJ, et al. Analysis of the human immunodeficiency virus-1 RNA packageome. RNA. 2016 doi: 10.1261/rna.057299.116. PubMed DOI PMC
Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL. A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes & Development. 2015;29:646–657. doi: 10.1101/gad.258731.115. PubMed DOI PMC
Schopman NCT, et al. Selective packaging of cellular miRNAs in HIV-1 particles. Virus Research. 2012;169:438–447. doi: 10.1016/j.virusres.2012.06.017. PubMed DOI
Eckwahl, M. J., Telesnitsky, A. & Wolin, S. L. Host RNA Packaging by Retroviruses: A Newly Synthesized Story. mBio7, 10.1128/mBio.02025-15 (2016). PubMed PMC
Berkowitz, R., Fisher, J. & Goff, S. P. In Morphogenesis and Maturation of Retroviruses (ed Hans-Georg Kräusslich) 177–218 (Springer Berlin Heidelberg, 1996).
Bagiński B, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Research. 2017;46:D303–D307. doi: 10.1093/nar/gkx1030. PubMed DOI PMC
Hauenschild R, et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Research. 2015;43:9950–9964. doi: 10.1093/nar/gkv895. PubMed DOI PMC
Tserovski L, et al. High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA. Methods. 2016;107:110–121. doi: 10.1016/j.ymeth.2016.02.012. PubMed DOI
Kietrys AM, Velema WA, Kool ET. Fingerprints of Modified RNA Bases from Deep Sequencing Profiles. Journal of the American Chemical Society. 2017;139:17074–17081. doi: 10.1021/jacs.7b07914. PubMed DOI PMC
Oerum S, Dégut C, Barraud P, Tisné C. m1A Post‐Transcriptional Modification in tRNAs. Biomolecules. 2017;7:20. doi: 10.3390/biom7010020. PubMed DOI PMC
Roovers M, et al. A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. Nucleic Acids Research. 2004;32:465–476. doi: 10.1093/nar/gkh191. PubMed DOI PMC
Narayanan A, et al. Exosomes Derived from HIV-1-infected Cells Contain Trans-activation Response Element RNA. Journal of Biological Chemistry. 2013;288:20014–20033. doi: 10.1074/jbc.M112.438895. PubMed DOI PMC
Wei F-Y, et al. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. The Journal of Clinical Investigation. 2011;121:3598–3608. doi: 10.1172/JCI58056. PubMed DOI PMC
Jiang M, et al. Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1. Journal of Virology. 1993;67:3246–3253. PubMed PMC
Mak J, et al. Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. Journal of Virology. 1994;68:2065–2072. PubMed PMC
Pavon-Eternod M, Wei M, Pan T, Kleiman L. Profiling non-lysyl tRNAs in HIV-1. RNA. 2010;16:267–273. doi: 10.1261/rna.1928110. PubMed DOI PMC
Onafuwa-Nuga AA, Telesnitsky A, King SR. 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. RNA. 2006;12:542–546. doi: 10.1261/rna.2306306. PubMed DOI PMC
McIntyre W, et al. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Research. 2018;46:5776–5791. doi: 10.1093/nar/gky029. PubMed DOI PMC
Yeung ML, et al. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Research. 2009;37:6575–6586. doi: 10.1093/nar/gkp707. PubMed DOI PMC
Schopman NCT, et al. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Research. 2012;40:414–427. doi: 10.1093/nar/gkr719. PubMed DOI PMC
Kutluay SB, et al. Global Changes in the RNA Binding Specificity of HIV-1 Gag Regulate Virion Genesis. Cell. 2014;159:1096–1109. doi: 10.1016/j.cell.2014.09.057. PubMed DOI PMC
Zaitseva L, Myers R, Fassati A. tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes. PLOS Biology. 2006;4:e332. doi: 10.1371/journal.pbio.0040332. PubMed DOI PMC
Li Manqing, Kao Elaine, Gao Xia, Sandig Hilary, Limmer Kirsten, Pavon-Eternod Mariana, Jones Thomas E., Landry Sebastien, Pan Tao, Weitzman Matthew D., David Michael. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012;491(7422):125–128. doi: 10.1038/nature11433. PubMed DOI PMC
Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints12. American Journal of Epidemiology. 1938;27:493–497. doi: 10.1093/oxfordjournals.aje.a118408. DOI
Su D, et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nature Protocols. 2014;9:828. doi: 10.1038/nprot.2014.047. PubMed DOI PMC
Winz Marie-Luise, Cahová Hana, Nübel Gabriele, Frindert Jens, Höfer Katharina, Jäschke Andres. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nature Protocols. 2016;12(1):122–149. doi: 10.1038/nprot.2016.163. PubMed DOI
Martin Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10. doi: 10.14806/ej.17.1.200. DOI
Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ. 2017;5:e3720. doi: 10.7717/peerj.3720. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC