It's the Little Things (in Viral RNA)
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32934087
PubMed Central
PMC7492739
DOI
10.1128/mbio.02131-20
PII: mBio.02131-20
Knihovny.cz E-zdroje
- Klíčová slova
- RNA modification, RNA modification detection, RNA virus, retroviruses, viral RNA,
- MeSH
- buněčné jádro metabolismus MeSH
- lidé MeSH
- messenger RNA MeSH
- posttranskripční úpravy RNA * MeSH
- replikace viru * MeSH
- RNA virová genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- messenger RNA MeSH
- RNA virová MeSH
Chemical modifications of viral RNA are an integral part of the viral life cycle and are present in most classes of viruses. To date, more than 170 RNA modifications have been discovered in all types of cellular RNA. Only a few, however, have been found in viral RNA, and the function of most of these has yet to be elucidated. Those few we have discovered and whose functions we understand have a varied effect on each virus. They facilitate RNA export from the nucleus, aid in viral protein synthesis, recruit host enzymes, and even interact with the host immune machinery. The most common methods for their study are mass spectrometry and antibody assays linked to next-generation sequencing. However, given that the actual amount of modified RNA can be very small, it is important to pair meticulous scientific methodology with the appropriate detection methods and to interpret the results with a grain of salt. Once discovered, RNA modifications enhance our understanding of viruses and present a potential target in combating them. This review provides a summary of the currently known chemical modifications of viral RNA, the effects they have on viral machinery, and the methods used to detect them.
Zobrazit více v PubMed
Breitbart M, Rohwer F. 2005. Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284. doi:10.1016/j.tim.2005.04.003. PubMed DOI
Baltimore D. 1971. Expression of animal virus genomes. Bacteriol Rev 35:235–241. doi:10.1128/MMBR.35.3.235-241.1971. PubMed DOI PMC
King AMQ, Lefkowitz E, Adams MJ, Carstens EB. 2011. Virus taxonomy. Elsevier, Amsterdam, the Netherlands.
Walsh D, Mathews MB, Mohr I. 2013. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 5:a012351. doi:10.1101/cshperspect.a012351. PubMed DOI PMC
Bushell M, Sarnow P. 2002. Hijacking the translation apparatus by RNA viruses. J Cell Biol 158:395–399. doi:10.1083/jcb.200205044. PubMed DOI PMC
López-Lastra M, Ramdohr P, Letelier A, Vallejos M, Vera-Otarola J, Valiente-Echeverrkía F. 2010. Translation initiation of viral mRNAs. Rev Med Virol 20:177–195. doi:10.1002/rmv.649. PubMed DOI PMC
Nicholson BL, White KA. 2015. Exploring the architecture of viral RNA genomes. Curr Opin Virol 12:66–74. doi:10.1016/j.coviro.2015.03.018. PubMed DOI
Cross ST, Michalski D, Miller MR, Wilusz J. 2019. RNA regulatory processes in RNA virus biology. Wiley Interdiscip Rev RNA 10:e1536. doi:10.1002/wrna.1536. PubMed DOI PMC
Limbach PA, Crain PF, McCloskey JA. 1994. Summary: the modified nucleosides of RNA. Nucleic Acids Res 22:2183–2196. doi:10.1093/nar/22.12.2183. PubMed DOI PMC
Davis FF, Allen FW. 1957. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 227:907–915. PubMed
Roundtree IA, Evans ME, Pan T, He C. 2017. Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200. doi:10.1016/j.cell.2017.05.045. PubMed DOI PMC
Baudin-Baillieu A, Fabret C, Liang XH, Piekna-Przybylska D, Fournier MJ, Rousset JP. 2009. Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Res 37:7665–7677. doi:10.1093/nar/gkp816. PubMed DOI PMC
Boccaletto P, MacHnicka MA, Purta E, Pitkowski P, Baginski B, Wirecki TK, De Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM. 2018. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. PubMed PMC
Helm M, Alfonzo JD. 2014. Posttranscriptional RNA modifications: playing metabolic games in a cell’s chemical legoland. Chem Biol 21:174–185. doi:10.1016/j.chembiol.2013.10.015. PubMed DOI PMC
Phizicky EM, Alfonzo JD. 2010. Do all modifications benefit all tRNAs? FEBS Lett 584:265–271. doi:10.1016/j.febslet.2009.11.049. PubMed DOI PMC
Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. 2012. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 13:175. doi:10.1186/gb-2012-13-10-175. PubMed DOI PMC
Li S, Mason CE. 2014. The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 15:127–150. doi:10.1146/annurev-genom-090413-025405. PubMed DOI
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. doi:10.1016/j.cell.2012.05.003. PubMed DOI PMC
Finka A, Sood V, Quadroni M, De Los Rios PDL, Goloubinoff P. 2015. Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs. Cell Stress Chaperones 20:605–620. doi:10.1007/s12192-015-0583-2. PubMed DOI PMC
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. doi:10.1038/nature11112. PubMed DOI
Potapov V, Fu X, Dai N, Corrêa IR, Tanner NA, Ong JL. 2018. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Res 46:5753–5763. doi:10.1093/nar/gky341. PubMed DOI PMC
Šimonová A, Svojanovská B, Trylčová J, Hubálek M, Moravčík O, Zavřel M, Pávová M, Hodek J, Weber J, Cvačka J, Pačes J, Cahová H. 2019. LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion. Sci Rep 9:8697. doi:10.1038/s41598-019-45079-1. PubMed DOI PMC
Batista PJ. 2017. The RNA modification N6-methyladenosine and its implications in human disease. Genomics Proteomics Bioinformatics 15:154–163. doi:10.1016/j.gpb.2017.03.002. PubMed DOI PMC
Netzband R, Pager CT. 2019. Epitranscriptomic marks: emerging modulators of RNA virus gene expression. Wiley Interdiscip Rev RNA 11:e1576. doi:10.1002/wrna.1576. PubMed DOI PMC
Riquelme-Barrios S, Pereira-Montecinos C, Valiente-Echeverría F, Soto-Rifo R. 2018. Emerging roles of N6-methyladenosine on HIV-1 RNA metabolism and viral replication. Front Microbiol 9:576. doi:10.3389/fmicb.2018.00576. PubMed DOI PMC
Gokhale NS, Horner SM. 2017. RNA modifications go viral. PLoS Pathog 13:e1006188. doi:10.1371/journal.ppat.1006188. PubMed DOI PMC
Kennedy EM, Courtney DG, Tsai K, Cullen BR. 2017. Viral epitranscriptomics. J Virol 91:e02263-16. doi:10.1128/JVI.02263-16. PubMed DOI PMC
Pereira-Montecinos C, Valiente-Echeverría F, Soto-Rifo R. 2017. Epitranscriptomic regulation of viral replication. Biochim Biophys Acta Gene Regul Mech 1860:460–471. doi:10.1016/j.bbagrm.2017.02.002. PubMed DOI
Yang J, Wang H, Zhang W. 2019. Regulation of virus replication and T cell homeostasis by N 6 -methyladenosine. Virol Sin 34:22–29. doi:10.1007/s12250-018-0075-5. PubMed DOI PMC
Manners O, Baquero-Perez B, Whitehouse A. 2019. m6A: widespread regulatory control in virus replication. Biochim Biophys Acta Gene Regul Mech 1862:370–381. doi:10.1016/j.bbagrm.2018.10.015. PubMed DOI PMC
Tan B, Gao SJ. 2018. RNA epitranscriptomics: regulation of infection of RNA and DNA viruses by N6-methyladenosine (m6A). Rev Med Virol 28:e1983. doi:10.1002/rmv.1983. PubMed DOI PMC
Tan B, Gao S-J. 2018. The RNA epitranscriptome of DNA viruses. J Virol 92:e00696-18. doi:10.1128/JVI.00696-18. PubMed DOI PMC
Dang W, Xie Y, Cao P, Xin S, Wang J, Li S, Li Y, Lu J. 2019. N6-methyladenosine and viral infection. Front Microbiol 10:417. doi:10.3389/fmicb.2019.00417. PubMed DOI PMC
Williams GD, Gokhale NS, Horner SM. 2019. Regulation of viral infection by the RNA modification N6-methyladenosine. Annu Rev Virol 6:235–253. doi:10.1146/annurev-virology-092818-015559. PubMed DOI PMC
Wu F, Cheng W, Zhao F, Tang M, Diao Y, Xu R. 2019. Association of N6-methyladenosine with viruses and related diseases. Virol J 16:133. doi:10.1186/s12985-019-1236-3. PubMed DOI PMC
Zhao BS, Roundtree IA, He C. 2017. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18:31–42. doi:10.1038/nrm.2016.132. PubMed DOI PMC
Nichols JL. 1979. N6-methyladenosine in maize poly(A)-containing RNA. Plant Sci Lett 15:357–361. doi:10.1016/0304-4211(79)90141-X. DOI
Perry RP, Kelley DE. 1974. Existence of methylated messenger RNA in mouse L cells. Cell 1:37–42. doi:10.1016/0092-8674(74)90153-6. DOI
Deng X, Chen K, Luo GZ, Weng X, Ji Q, Zhou T, He C. 2015. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res 43:6557–6567. doi:10.1093/nar/gkv596. PubMed DOI PMC
Kowalak JA, Dalluge JJ, McCloskey JA, Stetter KO. 1994. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33:7869–7876. doi:10.1021/bi00191a014. PubMed DOI
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, Sanjana NE, Freinkman E, Pacold ME, Satija R, Mikkelsen TS, Hacohen N, Zhang F, Carr SA, Lander ES, Regev A. 2014. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep 8:284–296. doi:10.1016/j.celrep.2014.05.048. PubMed DOI PMC
Zhang X, Wei L-H, Wang Y, Xiao Y, Liu J, Zhang W, Yan N, Amu G, Tang X, Zhang L, Jia G. 2019. Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates. Proc Natl Acad Sci U S A 116:2919–2924. doi:10.1073/pnas.1820574116. PubMed DOI PMC
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399. doi:10.1016/j.cell.2015.05.014. PubMed DOI PMC
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. 2014. N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. doi:10.1038/nature12730. PubMed DOI PMC
Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. 2015. N6 -methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564. doi:10.1038/nature14234. PubMed DOI PMC
Kandimalla R, Gao F, Li Y, Huang H, Ke J, Deng X, Zhao L, Zhou S, Goel A, Wang X. 2019. RNAMethyPro: a biologically conserved signature of N6-methyladenosine regulators for predicting survival at pan-cancer level. NPJ Precis Oncol 3:13. doi:10.1038/s41698-019-0085-2. PubMed DOI PMC
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. 2017. YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. Cell Res 27:315–328. doi:10.1038/cr.2017.15. PubMed DOI PMC
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. 2016. YTHDF2 destabilizes m 6 A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626. doi:10.1038/ncomms12626. PubMed DOI PMC
Kennedy EM, Bogerd HP, Kornepati AVR, Kang D, Ghoshal D, Marshall JB, Poling BC, Tsai K, Gokhale NS, Horner SM, Cullen BR. 2016. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 22:830. doi:10.1016/j.chom.2017.11.010. PubMed DOI PMC
Lu W, Tirumuru N, Gelais CS, Koneru Pc Liu C, Kvaratskhelia M, He C, Wu L. 2018. N 6 –Methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 293:12992–13005. doi:10.1074/jbc.RA118.004215. PubMed DOI PMC
Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V, Wang Y, Mason CE, Rana TM. 2016. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011. doi:10.1038/nmicrobiol.2016.11. PubMed DOI PMC
Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L. 2016. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 5:e15528. doi:10.7554/eLife.15528. PubMed DOI PMC
Chu C-C, Liu B, Plangger R, Kreutz C, Al-Hashimi HM. 2019. m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. PLoS One 14:e0224850. doi:10.1371/journal.pone.0224850. PubMed DOI PMC
Sherpa C, Grice SL. 2020. Structural fluidity of the human immunodeficiency virus Rev response element. Viruses 12:86. doi:10.3390/v12010086. PubMed DOI PMC
Tirumuru N, Wu L. 2019. HIV-1 envelope proteins up-regulate N 6 -methyladenosine levels of cellular RNA independently of viral replication. J Biol Chem 294:3249–3260. doi:10.1074/jbc.RA118.005608. PubMed DOI PMC
Bradrick SS. 2017. Causes and consequences of flavivirus RNA methylation. Front Microbiol 8:2374. doi:10.3389/fmicb.2017.02374. PubMed DOI PMC
Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J, Ilkayeva OR, Law BA, Holley CL, Garcia-Blanco MA, Evans MJ, Suthar MS, Bradrick SS, Mason CE, Horner SM. 2016. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665. doi:10.1016/j.chom.2016.09.015. PubMed DOI PMC
Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, Rana TM. 2016. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–673. doi:10.1016/j.chom.2016.10.002. PubMed DOI PMC
Hotchkiss RD. 1948. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332. PubMed
Dubin DT, Stollar V. 1975. Methylation of sindbis virus “26S” messenger RNA. Biochem Biophys Res Commun 66:1373–1379. doi:10.1016/0006-291x(75)90511-2. PubMed DOI
Dubin DT, Stollar V, Hsuchen CC, Timko K, Guild GM. 1977. Sindbis virus messenger RNA: the 5′-termini and methylated residues of 26 and 42 S RNA. Virology 77:457–470. doi:10.1016/0042-6822(77)90471-8. PubMed DOI
Durbin AF, Wang C, Marcotrigiano J, Gehrke L. 2016. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. mBio 7:e00833-16. doi:10.1128/mBio.00833-16. PubMed DOI PMC
Di Serio F, Torchetti EM, Daròs JA, Navarro B. 2019. Reassessment of viroid RNA cytosine methylation status at the single nucleotide level. Viruses 11:357. doi:10.3390/v11040357. PubMed DOI PMC
Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033. doi:10.1093/nar/gks144. PubMed DOI PMC
Courtney D, Tsai K, Bogerd HP, Kennedy EM, Law BA, Emery A, Swanstrom R, Holley CL, Cullen BR. 2019. Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe 26:217–227.e6. doi:10.1016/j.chom.2019.07.005. PubMed DOI PMC
Courtney DG, Chalem A, Bogerd HP, Law BA, Kennedy EM, Holley CL, Cullen BR. 2019. Extensive epitranscriptomic methylation of A and C residues on murine leukemia virus transcripts enhances viral gene expression. mBio 10:e01209-19. doi:10.1128/mBio.01209-19. PubMed DOI PMC
Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181:914–921. doi:10.1016/j.cell.2020.04.011. PubMed DOI PMC
Zinshteyn B, Nishikura K. 2009. Adenosine-to-inosine RNA editing. Wiley Interdiscip Rev Syst Biol Med 1:202–209. doi:10.1002/wsbm.10. PubMed DOI PMC
Nishikura K. 2010. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. doi:10.1146/annurev-biochem-060208-105251. PubMed DOI PMC
Jayan GC, Casey JL. 2002. Increased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2. J Virol 76:3819–3827. doi:10.1128/jvi.76.8.3819-3827.2002. PubMed DOI PMC
Gandy SZ, Linnstaedt SD, Muralidhar S, Cashman KA, Rosenthal LJ, Casey JL. 2007. RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol 81:13544–13551. doi:10.1128/JVI.01521-07. PubMed DOI PMC
Liao JY, Thakur SA, Zalinger ZB, Gerrish KE, Imani F. 2011. Inosine-containing RNA is a novel innate immune recognition element and reduces RSV infection. PLoS One 6:e26463. doi:10.1371/journal.pone.0026463. PubMed DOI PMC
Nie Y, Hammond GL, Yang J-H. 2007. Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. J Virol 81:917–923. doi:10.1128/JVI.01527-06. PubMed DOI PMC
Doria M, Neri F, Gallo A, Farace MG, Michienzi A. 2009. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res 37:5848–5858. doi:10.1093/nar/gkp604. PubMed DOI PMC
George CX, Samuel CE. 1999. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A 96:4621–4626. doi:10.1073/pnas.96.8.4621. PubMed DOI PMC
Toth AM, Li Z, Cattaneo R, Samuel CE. 2009. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. J Biol Chem 284:29350–29356. doi:10.1074/jbc.M109.045146. PubMed DOI PMC
Orecchini E, Federico M, Doria M, Arenaccio C, Giuliani E, Ciafrè SA, Michienzi A. 2015. The ADAR1 editing enzyme is encapsidated into HIV-1 virions. Virology 485:475–480. doi:10.1016/j.virol.2015.07.027. PubMed DOI
Sarvestani ST, Tate MD, Moffat JM, Jacobi AM, Behlke MA, Miller AR, Beckham SA, McCoy CE, Chen W, Mintern JD, O’Keeffe M, John M, Williams BRG, Gantier MP. 2014. Inosine-mediated modulation of RNA sensing by Toll-like receptor 7 (TLR7) and TLR8. J Virol 88:799–810. doi:10.1128/JVI.01571-13. PubMed DOI PMC
Rizzetto M, Hoyer B, Canese MG, Shih JW, Purcell RH, Gerin JL. 1980. δ agent: association of δ antigen with hepatitis B surface antigen and RNA in serum of δ-infected chimpanzees. Proc Natl Acad Sci U S A 77:6124–6128. doi:10.1073/pnas.77.10.6124. PubMed DOI PMC
Weiner AJ, Choo QL, Wang KS, Govindarajan S, Redeker AG, Gerin JL, Houghton M. 1988. A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24 delta and p27 delta. J Virol 62:594–599. doi:10.1128/JVI.62.2.594-599.1988. PubMed DOI PMC
Polson AG, Bass BL, Casey JL. 1996. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 381:346–346. doi:10.1038/381346a0. PubMed DOI
Sato S, Wong SK, Lazinski DW. 2001. Hepatitis delta virus minimal substrates competent for editing by ADAR1 and ADAR2. J Virol 75:8547–8555. doi:10.1128/jvi.75.18.8547-8555.2001. PubMed DOI PMC
Jones JW, Robins RK. 1963. Purine nucleosides. III. Methylation studies of certain naturally occurring purine nucleosides. J Am Chem Soc 85:193–201. doi:10.1021/ja00885a019. DOI
Hall RH. 1964. On the 2’-O-methylribonucleoside content of ribonucleic acids. Biochemistry 3:876–880. doi:10.1021/bi00895a001. PubMed DOI
Werner M, Purta E, Kaminska KH, Cymerman IA, Campbell DA, Mittra B, Zamudio JR, Sturm NR, Jaworski J, Bujnicki JM. 2011. 2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res 39:4756–4768. doi:10.1093/nar/gkr038. PubMed DOI PMC
Byszewska M, Mietański M, Purta E, Bujnicki JM. 2014. RNA methyltransferases involved in 5′ cap biosynthesis. RNA Biol 11:1597–1607. doi:10.1080/15476286.2015.1004955. PubMed DOI PMC
Smietanski M, Werner M, Purta E, Kaminska KH, Stepinski J, Darzynkiewicz E, Nowotny M, Bujnicki JM. 2014. Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nat Commun 5:3004. doi:10.1038/ncomms4004. PubMed DOI PMC
Picard-Jean F, Brand C, Tremblay-Létourneau M, Allaire A, Beaudoin MC, Boudreault S, Duval C, Rainville-Sirois J, Robert F, Pelletier J, Geiss BJ, Bisaillon M. 2018. 2’-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO. PLoS One 13:e0193804. doi:10.1371/journal.pone.0193804. PubMed DOI PMC
Koonin EV, Moss B. 2010. Viruses know more than one way to don a cap. Proc Natl Acad Sci U S A 107:3283–3284. doi:10.1073/pnas.0915061107. PubMed DOI PMC
Decroly E, Ferron F, Lescar J, Canard B. 2012. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol 10:51–65. doi:10.1038/nrmicro2675. PubMed DOI PMC
Bamming D, Horvath CM. 2009. Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2. J Biol Chem 284:9700–9712. doi:10.1074/jbc.M807365200. PubMed DOI PMC
Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. 2011. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143. doi:10.1038/ni.1979. PubMed DOI PMC
Reikine S, Nguyen JB, Modis Y. 2014. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol 5:342. doi:10.3389/fimmu.2014.00342. PubMed DOI PMC
Fang R, Jiang Q, Zhou X, Wang C, Guan Y, Tao J, Xi J, Feng JM, Jiang Z. 2017. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. PLoS Pathog 13:e1006720. doi:10.1371/journal.ppat.1006720. PubMed DOI PMC
Jacobs JL, Coyne CB. 2013. Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol 425:5009–5019. doi:10.1016/j.jmb.2013.10.007. PubMed DOI PMC
Dias Junior AG, Sampaio NG, Rehwinkel J. 2019. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 27:75–85. doi:10.1016/j.tim.2018.08.007. PubMed DOI PMC
Brisse M, Ly H. 2019. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front Immunol 10:1586. doi:10.3389/fimmu.2019.01586. PubMed DOI PMC
Hyde JL, Diamond MS. 2015. Innate immune restriction and antagonism of viral RNA lacking 2’-O methylation. Virology 479–480:66–74. doi:10.1016/j.virol.2015.01.019. PubMed DOI PMC
Diamond MS. 2014. IFIT1: a dual sensor and effector molecule that detects non-2’-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev 25:543–550. doi:10.1016/j.cytogfr.2014.05.002. PubMed DOI PMC
Abbas YM, Laudenbach BT, Martínez-Montero S, Cencic R, Habjan M, Pichlmair A, Damha MJ, Pelletier J, Nagar B. 2017. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc Natl Acad Sci U S A 114:E2106–E2115. doi:10.1073/pnas.1612444114. PubMed DOI PMC
Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV. 2014. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5’-terminal regions of cap0-, cap1- and 5’ppp- mRNAs. Nucleic Acids Res 42:3228–3245. doi:10.1093/nar/gkt1321. PubMed DOI PMC
Diamond MS, Farzan M. 2013. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 13:46–57. doi:10.1038/nri3344. PubMed DOI PMC
Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. 2019. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565:500–504. doi:10.1038/s41586-018-0841-4. PubMed DOI
Zhang Y, Wei Y, Zhang X, Cai H, Niewiesk S, Li J. 2014. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J Virol 88:11411–11429. doi:10.1128/JVI.00876-14. PubMed DOI PMC
Li S-H, Dong H, Li X-F, Xie X, Zhao H, Deng Y-Q, Wang X-Y, Ye Q, Zhu S-Y, Wang H-J, Zhang B, Leng Q-B, Zuest R, Qin E-D, Qin C-F, Shi P-Y. 2013. Rational design of a flavivirus vaccine by abolishing viral RNA 2’-O methylation. J Virol 87:5812–5819. doi:10.1128/JVI.02806-12. PubMed DOI PMC
Menachery VD, Yount BL, Josset L, Gralinski LE, Scobey T, Agnihothram S, Katze MG, Baric RS. 2014. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-O-methyltransferase activity. J Virol 88:4251–4264. doi:10.1128/JVI.03571-13. PubMed DOI PMC
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162. doi:10.1016/j.cell.2014.08.028. PubMed DOI PMC
Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–163. doi:10.1038/nature18631. PubMed DOI PMC
Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M. 2008. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523–527. doi:10.1038/nature07106. PubMed DOI PMC
McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, Henderson E, Arra M, Canki M, Fabris D, Pager CT. 2018. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 46:5776–5791. doi:10.1093/nar/gky029. PubMed DOI PMC
Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, Erlacher M, Rossmanith W, Stern-Ginossar N, Schwartz S. 2017. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–255. doi:10.1038/nature24456. PubMed DOI
Eckwahl MJ, Arnion H, Kharytonchyk S, Zang T, Bieniasz PD, Telesnitsky A, Wolin SL. 2016. Analysis of the human immunodeficiency virus-1 RNA packageome. RNA 22:1228–1238. doi:10.1261/rna.057299.116. PubMed DOI PMC
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. doi:10.1038/nmeth.1226. PubMed DOI
Limbach PA, Paulines MJ. 2017. Going global: the new era of mapping modifications in RNA. Wiley Interdiscip Rev RNA 8. doi:10.1002/wrna.1367. PubMed DOI PMC
Lodish H. 2013. Molecular cell biology. W.H. Freeman and Co., New York, NY, USA.
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. 2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772. doi:10.1038/nmeth.3453. PubMed DOI PMC
Edelheit S, Schwartz S, Mumbach MR, Wurtzel O, Sorek R. 2013. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9:e1003602. doi:10.1371/journal.pgen.1003602. PubMed DOI PMC
Slama K, Galliot A, Weichmann F, Hertler J, Feederle R, Meister G, Helm M. 2019. Determination of enrichment factors for modified RNA in MeRIP experiments. Methods 156:102–109. doi:10.1016/j.ymeth.2018.10.020. PubMed DOI
Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M, Marx A. 2018. Engineering of a DNA polymerase for direct m 6 A sequencing. Angew Chem Int Ed Engl 57:417–421. doi:10.1002/anie.201710209. PubMed DOI PMC
Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A, Hanna JH, Rossmanith W, Schwartz S. 2019. Deciphering the “m6A code” via antibody-independent quantitative profiling. Cell 178:731–747.e16. doi:10.1016/j.cell.2019.06.013. PubMed DOI
Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. 2013. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19:1848–1856. doi:10.1261/rna.041178.113. PubMed DOI PMC
Meyer KD. 2019. DART-seq: an antibody-free method for global m6A detection. Nat Methods 16:1275–1280. doi:10.1038/s41592-019-0570-0. PubMed DOI PMC
Li Y, Tollefsbol TO. 2011. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol 791:11–21. doi:10.1007/978-1-61779-316-5_2. PubMed DOI PMC
Gu W, Hurto RL, Hopper AK, Grayhack EJ, Phizicky EM. 2005. Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Mol Cell Biol 25:8191–8201. doi:10.1128/MCB.25.18.8191-8201.2005. PubMed DOI PMC
Sabban EL, Bhanot OS. 1982. The effects of bisulfite-induced C to U transitions on aminoacylation of Escherichia coli glycine tRNA. J Biol Chem 257:4796–4805. PubMed
Schaefer M, Pollex T, Hanna K, Lyko F. 2009. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12. doi:10.1093/nar/gkn954. PubMed DOI PMC
Amort T, Rieder D, Wille A, Khokhlova-Cubberley D, Riml C, Trixl L, Jia XY, Micura R, Lusser A. 2017. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol 18:1. doi:10.1186/s13059-016-1139-1. PubMed DOI PMC
Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. 2019. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A 116:6784–6789. doi:10.1073/pnas.1817334116. PubMed DOI PMC
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T, He C. 2015. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew Chem Int Ed Engl 54:1587–1590. doi:10.1002/anie.201410647. PubMed DOI PMC
Hartstock K, Nilges BS, Ovcharenko A, Cornelissen NV, Püllen N, Lawrence-Dörner AM, Leidel SA, Rentmeister A. 2018. Enzymatic or in vivo installation of propargyl groups in combination with click chemistry for the enrichment and detection of methyltransferase target sites in RNA. Angew Chem Int Ed Engl 57:6342–6346. doi:10.1002/anie.201800188. PubMed DOI
Khoddami V, Cairns BR. 2013. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464. doi:10.1038/nbt.2566. PubMed DOI PMC
Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, Frye M. 2013. NSUN2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261. doi:10.1016/j.celrep.2013.06.029. PubMed DOI PMC
Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF. 2004. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001–1005. doi:10.1038/nbt996. PubMed DOI
Kleinman CL, Majewski J. 2012. Comment on “Widespread RNA and DNA Sequence Differences in the Human Transcriptome. Science 335:1302. doi:10.1126/science.1209658. PubMed DOI
Pickrell JK, Gilad Y, Pritchard JK. 2012. Comment on “Widespread RNA and DNA Sequence Differences in the Human Transcriptome. Science 335:1302. doi:10.1126/science.1210484. PubMed DOI PMC
Sakurai M, Yano T, Kawabata H, Ueda H, Suzuki T. 2010. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat Chem Biol 6:733–740. doi:10.1038/nchembio.434. PubMed DOI
Sakurai M, Ueda H, Yano T, Okada S, Terajima H, Mitsuyama T, Toyoda A, Fujiyama A, Kawabata H, Suzuki T. 2014. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24:522–534. doi:10.1101/gr.162537.113. PubMed DOI PMC
Wang J, Alvin Chew BL, Lai Y, Dong H, Xu L, Balamkundu S, Cai WM, Cui L, Liu CF, Fu XY, Lin Z, Shi PY, Lu TK, Luo D, Jaffrey SR, Dedon PC. 2019. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 47:e130. doi:10.1093/nar/gkz751. PubMed DOI PMC
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. 2015. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl 54:451–455. doi:10.1002/anie.201408362. PubMed DOI
Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y. 2016. Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res 44:e135–e135. doi:10.1093/nar/gkw547. PubMed DOI PMC
Zhu Y, Pirnie SP, Carmichael GG. 2017. High-throughput and site-specific identification of 2′-O-methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA 23:1303–1314. doi:10.1261/rna.061549.117. PubMed DOI PMC
Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, Dominissini D, He C. 2017. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods 14:695–698. doi:10.1038/nmeth.4294. PubMed DOI PMC
Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, Dominissini D, He C. 2018. Correction: corrigendum: Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods 15:226–227. doi:10.1038/nmeth0318-226c. PubMed DOI PMC
Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, Neuhaus EB, Dugan VG, Wentworth DE, Barnes JR. 2018. Author correction: direct RNA sequencing of the coding complete influenza A virus genome. Sci Rep 8:15746. doi:10.1038/s41598-018-34067-6. PubMed DOI PMC
Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner DJ. 2018. Highly parallel direct RN A sequencing on an array of nanopores. Nat Methods 15:201–206. doi:10.1038/nmeth.4577. PubMed DOI
Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, Schwartz S, Mattick JS, Smith MA, Novoa EM. 2019. Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079. doi:10.1038/s41467-019-11713-9. PubMed DOI PMC
Leger A, Amaral PP, Pandolfini L, Capitanchik C, Capraro F, Barbieri I, Migliori V, Luscombe NM, Enright AJ, Tzelepis K, Ule J, Fitzgerald T, Birney E, Leonardi T, Kouzarides T. 2019. RNA modifications detection by comparative Nanopore direct RNA sequencing. bioRxiv 843136. doi:10.1101/843136. PubMed DOI PMC
Hudeček O, Benoni R, Reyes-Gutierrez PE, Culka M, Šanderová H, Hubálek M, Rulíšek L, Cvačka J, Krásný L, Cahová H. 2020. Dinucleoside polyphosphates act as 5′-RNA caps in bacteria. Nat Commun 11:1052. doi:10.1038/s41467-020-14896-8. PubMed DOI PMC
Parrish S, Hurchalla M, Liu SW, Moss B. 2009. The African swine fever virus g5R protein possesses mRNA decapping activity. Virology 393:177–182. doi:10.1016/j.virol.2009.07.026. PubMed DOI PMC
Parrish S, Resch W, Moss B. 2007. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci U S A 104:2139–2144. doi:10.1073/pnas.0611685104. PubMed DOI PMC
Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR. 2017. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386. doi:10.1016/j.chom.2017.08.004. PubMed DOI PMC
Tsai K, Courtney DG, Cullen BR. 2018. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919. doi:10.1371/journal.ppat.1006919. PubMed DOI PMC
Hao H, Hao S, Chen H, Chen Z, Zhang Y, Wang J, Wang H, Zhang B, Qiu J, Deng F, Guan W. 2019. N 6 -methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res 47:362–374. doi:10.1093/nar/gky1007. PubMed DOI PMC
Beemon K, Hunter T. 1977. In vitro translation yields a possible Rous sarcoma virus src gene product. Proc Natl Acad Sci U S A 74:3302–3306. doi:10.1073/pnas.74.8.3302. PubMed DOI PMC
Kane SE, Beemon K. 1985. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol 5:2298–2306. doi:10.1128/mcb.5.9.2298. PubMed DOI PMC
Stoltzfus CM, Dane RW. 1982. Accumulation of spliced avian retrovirus mRNA is inhibited in S-adenosylmethionine-depleted chicken embryo fibroblasts. J Virol 42:918–931. doi:10.1128/JVI.42.3.918-931.1982. PubMed DOI PMC
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141. doi:10.1016/j.cell.2010.03.009. PubMed DOI PMC
Krug RM, Morgan MA, Shatkin AJ. 1976. Influenza viral mRNA contains internal N6-methyladenosine and 5’-terminal 7-methylguanosine in cap structures. J Virol 20:45–53. doi:10.1128/JVI.20.1.45-53.1976. PubMed DOI PMC
Narayan P, Ayers DF, Rottman FM, Maroney PA, Nilsen TW. 1987. Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Mol Cell Biol 7:1572–1575. doi:10.1128/mcb.7.4.1572. PubMed DOI PMC
Phuphuakrat A, Kraiwong R, Boonarkart C, Lauhakirti D, Lee T-H, Auewarakul P. 2008. Double-stranded RNA adenosine deaminases enhance expression of human immunodeficiency virus type 1 proteins. J Virol 82:10864–10872. doi:10.1128/JVI.00238-08. PubMed DOI PMC
Khrustalev VV, Khrustaleva TA, Sharma N, Giri R. 2017. Mutational pressure in Zika virus: local ADAR-editing areas associated with pauses in translation and replication. Front Cell Infect Microbiol 7:44. doi:10.3389/fcimb.2017.00044. PubMed DOI PMC
Piontkivska H, Frederick M, Miyamoto MM, Wayne ML. 2017. RNA editing by the host ADAR system affects the molecular evolution of the Zika virus. Ecol Evol 7:4475–4485. doi:10.1002/ece3.3033. PubMed DOI PMC
Casey JL. 2006. RNA editing in hepatitis delta virus. Curr Top Microbiol Immunol 307:67–89. doi:10.1007/3-540-29802-9_4. PubMed DOI
Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA. 1988. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265. doi:10.1016/0092-8674(88)90048-7. PubMed DOI PMC
Pfaller CK, Mastorakos GM, Matchett WE, Ma X, Samuel CE, Cattaneo R. 2015. Measles virus defective interfering RNAs are generated frequently and early in the absence of C protein and can be destabilized by adenosine deaminase acting on RNA-1-like hypermutations. J Virol 89:7735–7747. doi:10.1128/JVI.01017-15. PubMed DOI PMC
Dong H, Chang DC, Hua MHC, Lim SP, Chionh YH, Hia F, Lee YH, Kukkaro P, Lok S-M, Dedon PC, Shi P-Y. 2012. 2′-O methylation of internal adenosine by flavivirus NS5 methyltransferase. PLoS Pathog 8:e1002642. doi:10.1371/journal.ppat.1002642. PubMed DOI PMC