Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23715017
PubMed Central
PMC3807264
DOI
10.1038/hdy.2013.51
PII: hdy201351
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro MeSH
- chromozomy rostlin genetika MeSH
- druhová specificita MeSH
- genom rostlinný MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie genetika MeSH
- mutace INDEL genetika MeSH
- plastidy genetika MeSH
- rostliny genetika MeSH
- sekvenční analýza DNA MeSH
- transpozibilní elementy DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
- transpozibilní elementy DNA MeSH
We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.
Zobrazit více v PubMed
Altshul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Ayliffe MA, Scott NS, Timmis JN. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol. 1998;15:738–745. PubMed
Bensasson D, Zhang DX, Hartl DL, Hewitt GM. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol Evol. 2001;16:314–321. PubMed
Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002;12:1075–1079. PubMed PMC
Ellis J. Chloroplast genes inside plant mitochondria. Nature. 1982;299:678–679. PubMed
Guo X, Ruan S, Hu W, Cai D, Fan L. Chloroplast DNA insertions into nuclear genome of rice: the genes, sites and ages of insertion involved. Func Integr Genomics. 2008;8:101–108. PubMed
Hazkani-Covo E, Sorek R, Graur D. Evolutionary dynamics of large numts in the human genome: Rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol. 2003;56:169–174. PubMed
Hazkani-Covo E, Covo S. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet. 2008;4:e1000237. PubMed PMC
Hazkani-Covo E, Zeller RM, Martin W. Molecular Poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010;6:e1000834. PubMed PMC
Henze K, Martin W. How mitochondrial genes get into the nucleus. Trends Genet. 2001;17:383–387. PubMed
Huang CY, Grunheit N, Ahmadinejad N, Timmis JN, Martin W. Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiol. 2005;138:1723–1733. PubMed PMC
Kejnovsky E, Leitch I, Leitch A. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol. 2009;24:572–582. PubMed
Kejnovsky E, Hawkins JS, Feschotte C.2012Plant transposable elements: biology and evolutionWendel JF, Greilhuber J, Dolezel J, Leitch IJ (eds).Plant Genome Diversity Volume 1Springer: Wien, Heidelberg, NewYork, Dortrecht, London
Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Ann Rev Plant Biol. 2009;60:115–138. PubMed
Leister D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet. 2005;21:655–663. PubMed
Lewin R. No genome barriers to promiscuous DNA. Science. 1984;224:970–971. PubMed
Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 2004;14:860–869. PubMed PMC
Martin W, Herrmann RG. Gene transfers from organelles to the nucelus: how much, what happens, and why. Plant Physiol. 1998;118:9–17. PubMed PMC
Martin W, Rujan T, Richly E, Hansen A, Cornelson S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002;99:12246–12251. PubMed PMC
Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FK, Macas J, Schmutzer T, et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA. 2012;109:13343–13346. PubMed PMC
Matsuo M, Ito Y, Yamauchi R, Obokata J. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell. 2005;17:665–675. PubMed PMC
Noutsos C, Richly E, Leister D. Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res. 2005;15:616–628. PubMed PMC
Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL. Evidence for DNA loss as a determinant of genome size. Science. 2000;287:1060–1062. PubMed
Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol. 2004a;21:1081–1084. PubMed
Richly E, Leister D. NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol. 2004b;21:1972–1980. PubMed
Roark LM, Hui AY, Donnelly L, Birchler JA, Newton KJ. Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Genome Res. 2010;129:17–23. PubMed
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998;20:43–45. PubMed
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–768. PubMed
Selosse M-A, Albert B, Godelle B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol. 2001;16:135–141. PubMed
Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA. Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol. 2003;52:923–934. PubMed
Smith DR, Crosby K, Lee RW. Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol Evol. 2011;3:365–371. PubMed PMC
Stegemann S, Bock R. Experimental reconstruction of functional gene tarsnefer from tobacco plastid genome to the nucleus. Plant Cell. 2006;18:2869–2878. PubMed PMC
Yuan Q, Hill J, Hsiao K, Moffat K, Ouyang S, Cheng Z, et al. Genome sequencing of a 239-kb region of rice chromosome 10 L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol Gen Genet. 2002;267:713–720. PubMed
Impact of repetitive DNA on sex chromosome evolution in plants
The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes