Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals

. 2024 Jan 03 ; 41 (1) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38124445

The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.

Zobrazit více v PubMed

Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature. 2000:408(6810):354–357. 10.1038/35042567. PubMed DOI

Albayrak L, Khanipov K, Pimenova M, Golovko G, Rojas M, Pavlidis I, Chumakov S, Aguilar G, Chávez A, Widger WR, et al. . The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome. BMC Genomics. 2016:17(1):1017. 10.1186/s12864-016-3375-x. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2. PubMed DOI

Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol. 2011:60(5):685–699. 10.1093/sysbio/syr041. PubMed DOI PMC

Antunes A, Ramos MJ. Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics. 2005:86(6):708–717. 10.1016/j.ygeno.2005.08.002. PubMed DOI

Bensasson D, Feldman MW, Petrov DA. Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol. 2003:57(3):343–354. 10.1007/s00239-003-2485-7. PubMed DOI

Bensasson D, Zhang D, Hartl DL, Hewitt GM. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol Evol. 2001:16(6):314–321. 10.1016/S0169-5347(01)02151-6. PubMed DOI

Blanchard JL, Schmidt GW. Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol. 1996:13(3):537–548. 10.1093/oxfordjournals.molbev.a025614. PubMed DOI

Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, Attimonelli M. NUMTs colonization in mammalian genomes. Sci Rep. 2017:7(1):16357. 10.1038/s41598-017-16750-2. PubMed DOI PMC

Capilla L, Sánchez-Guillén RA, Farré M, Paytuví-Gallart A, Malinverni R, Ventura J, Larkin DM, Ruiz-Herrera A. Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in rodentia. Genome Biol Evol. 2016:8(12):3703–3717. 10.1093/gbe/evw276. PubMed DOI PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000:17(4):540–552. 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Cheng X, Ivessa AS. Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast. Eur J Cell Biol. 2012:91(10):782–788. 10.1016/j.ejcb.2012.06.005. PubMed DOI

Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016:65(6):997–1008. 10.1093/sysbio/syw037. PubMed DOI PMC

Chorev M, Carmel L. The function of introns. Front Genet. 2012:3:55. 10.3389/fgene.2012.00055. PubMed DOI PMC

Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017:33(18):2938–2940. 10.1093/bioinformatics/btx364. PubMed DOI PMC

Dayama G, Emery SB, Kidd JM, Mills RE. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 2014:42(20):12640–12649. 10.1093/nar/gku1038. PubMed DOI PMC

Dayama G, Zhou W, Prado-Martinez J, Marques-Bonet T, Mills RE. Characterization of nuclear mitochondrial insertions in the whole genomes of primates. NAR Genom Bioinform. 2020:2(4):lqaa089. 10.1093/nargab/lqaa089. PubMed DOI PMC

Foley NM, Springer MS, Teeling EC. Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci. 2016:371(1699):20150140. 10.1098/rstb.2015.0140. PubMed DOI PMC

Francis WR, Worheide G. Similar ratios of introns to intergenic sequence across animal genomes. Genome Biol Evol. 2017:9(6):1582–1598. 10.1093/gbe/evx103. PubMed DOI PMC

Goldin E, Gupta S, Brady RO, Ellis JR, Schiffmann R. Transfer of a mitochondrial DNA fragment to MCOLN1 causes an inherited case of mucolipidosis IV. Hum Mutat. 2004:24(6):460–465. 10.1002/humu.20094. PubMed DOI

Grau ET, Charles M, Féménia M, Rebours E, Vaiman A, Rocha D. Survey of mitochondrial sequences integrated into the bovine nuclear genome. Sci Rep. 2020:10(1):2077. 10.1038/s41598-020-59155-4. PubMed DOI PMC

Gu Z, Gu L, Eils R, Schlesner M, Brors B. . Circlize implements and enhances circular visualization in R. Bioinformatics. 2014:30(19):2811–2812. 10.1093/bioinformatics/btu393. PubMed DOI

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010:59(3):307–321. 10.1093/sysbio/syq010. PubMed DOI

Hazkani-Covo E. Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny. Mol Biol Evol. 2009:26(10):2175–2179. 10.1093/molbev/msp131. PubMed DOI

Hazkani-Covo E. A burst of numt insertion in the dasyuridae family during marsupial evolution. Front Ecol Evol. 2022:10:844443. 10.3389/fevo.2022.844443. DOI

Hazkani-Covo E, Covo S. NUMT-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet. 2008:4(10):e1000237. 10.1371/journal.pgen.1000237. PubMed DOI PMC

Hazkani-Covo E, Graur D. A comparative analysis of NUMT evolution in human and chimpanzee. Mol Biol Evol. 2007:24(1):13–18. 10.1093/molbev/msl149. PubMed DOI

Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (NUMTs) in sequenced nuclear genomes. PLoS Genet. 2010:6(2):e1000834. 10.1371/journal.pgen.1000834. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018:35(2):518–522. 10.1093/molbev/msx281. PubMed DOI PMC

Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, Winkler S, Jermiin LS, Skirmuntt EC, Katzourakis A, et al. . Six reference-quality genomes reveal evolution of bat adaptations. Nature. 2020:583(7817):578–584. 10.1038/s41586-020-2486-3. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC

Kealy S, Beck R. Total evidence phylogeny and evolutionary timescale for Australian faunivorous marsupials (Dasyuromorphia). BMC Evol Biol. 2017:17(1):240. 10.1186/s12862-017-1090-0. PubMed DOI PMC

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015:12(4):357–360. 10.1038/nmeth.3317. PubMed DOI PMC

Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol. 2009:60(1):115–138. 10.1146/annurev.arplant.043008.092119. PubMed DOI

Ko Y-J, Yang EC, Lee J-H, Lee KW, Jeong J-Y, Park K, Chung O, Bhak J, Lee J-H, Yim H-S. Characterization of cetacean NUMT and its application into cetacean phylogeny. Genes Genomics. 2015:37(12):1061–1071. 10.1007/s13258-015-0353-7. DOI

Leister D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet. 2005:21(12):655–663. 10.1016/j.tig.2005.09.004. PubMed DOI

Li G, Davis BW, Eizirik E, Murphy WJ. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 2016:26(1):1–11. 10.1101/gr.186668.114. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 genome project data processing subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics: 2009:25(16):2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Liang B, Wang N, Li N, Kimball RT, Braun EL. Comparative genomics reveals a burst of homoplasy-free NUMT insertions. Mol Biol Evol. 2018:35(8):2060–2064. 10.1093/molbev/msy112. PubMed DOI

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011:17(1):10–12. 10.14806/ej.17.1.200. DOI

Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TL, Stadler T, et al. . Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science. 2011:334(6055):521–524. 10.1126/science.1211028. PubMed DOI

Michalovova M, Vyskot B, Kejnovsky E. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity (Edinb). 2013:111(4):314–320. 10.1038/hdy.2013.51. PubMed DOI PMC

Morgan CC, Creevey CJ, O’Connell MJ. Mitochondrial data are not suitable for resolving placental mammal phylogeny. Mamm Genome. 2014:25(11–12):636–647. 10.1007/s00335-014-9544-9. PubMed DOI

Mourier T, Hansen AJ, Willerslev E, Arctander P. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol. 2001:18(9):1833–1837. 10.1093/oxfordjournals.molbev.a003971. PubMed DOI

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015:32(1):268–274. 10.1093/molbev/msu300. PubMed DOI PMC

Perna NT, Kocher TD. Mitochondrial DNA: molecular fossils in the nucleus. Curr Biol. 1996:6(2):128–129. 10.1016/S0960-9822(02)00441-4. PubMed DOI

Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 2003:13(1):37–45. 10.1101/gr.757503. PubMed DOI PMC

Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie KM, Bates PJ, Satasook C, Nwe T, Bu SS, Mackie IJ. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat Commun. 2011:2(1):573. 10.1038/ncomms1582. PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010:26(6):841–842. 10.1093/bioinformatics/btq033. PubMed DOI PMC

Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012:3(2):217–223. 10.1111/j.2041-210X.2011.00169.x. DOI

Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol. 2004:21(6):1081–1084. 10.1093/molbev/msh110. PubMed DOI

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011:29(1):24–26. 10.1038/nbt.1754. PubMed DOI PMC

Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol. 2017:91:145–155. 10.1016/j.biocel.2017.06.016. PubMed DOI

Simakov O, Marlétaz F, Yue JX, O’Connell B, Jenkins J, Brandt A, Calef R, Tung CH, Huang TK, Schmutz J. Deeply conserved synteny resolves early events in vertebrate evolution. Nat Ecol Evol. 2020:4(6):820–830. 10.1038/s41559-020-1156-z. PubMed DOI PMC

Smit AH, Hubley R, Green P. RepeatMasker Open-4.0. http://www.repeatmasker.org. 2013–2015.

Sorenson MD, Quinn TW. NUMTs: a challenge for avian systematics and population biology. Auk. 1998:115(1):214–221. 10.2307/4089130. DOI

Springer MS, Murphy WJ, Eizirik E, O’Brien SJ. Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci U S A. 2003:100(3):1056–1061. 10.1073/pnas.0334222100. PubMed DOI PMC

Team RC . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. ISBN 3-900051-07-0. https://ropensci.org/blog/2021/11/16/how-to-cite-r-and-r-packages/.

Thalmann O, Hebler J, Poinar HN, Paabo S, Vigilant L. Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol. 2004:13(2):321–335. 10.1046/j.1365-294X.2003.02070.x. PubMed DOI

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004:5(2):123–135. 10.1038/nrg1271. PubMed DOI

Triant DA, DeWoody JA. Extensive mitochondrial DNA transfer in a rapidly evolving rodent has been mediated by independent insertion events and by duplications. Gene. 2007:401(1–2):61–70. 10.1016/j.gene.2007.07.003. PubMed DOI

Triant DA, Pearson WR. Comparison of detection methods and genome quality when quantifying nuclear mitochondrial insertions in vertebrate genomes. Front Genet. 2022:13:984513. 10.3389/fgene.2022.984513. PubMed DOI PMC

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016:44(W1):W232–W235. 10.1093/nar/gkw256. PubMed DOI PMC

Tsuji J, Frith MC, Tomii K, Horton P. Mammalian NUMT insertion is non-random. Nucleic Acids Res. 2012:40(18):9073–9088. 10.1093/nar/gks424. PubMed DOI PMC

Turner C, Killoran C, Thomas NS, Rosenberg M, Chuzhanova NA, Johnston J, Kemel Y, Cooper DN, Biesecker LG. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum Genet. 2003:112(3):303–309. 10.1007/s00439-002-0892-2. PubMed DOI

Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD. Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci U S A. 1997:94(26):14900–14905. 10.1073/pnas.94.26.14900. PubMed DOI PMC

Wang JX, Liu J, Miao YH, Huang DW, Xiao JH. Tracking the distribution and burst of nuclear mitochondrial DNA sequences (NUMTs) in fig wasp genomes. Insects. 2020:11(10):680. 10.3390/insects11100680. PubMed DOI PMC

Wang D, Lloyd AH, Timmis JN. Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. Proc Natl Acad Sci U S A. 2012:109(7):2444–2448. 10.1073/pnas.1117890109. PubMed DOI PMC

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2018:35(3):543–548. 10.1093/molbev/msx319. PubMed DOI PMC

Wei W, Schon KR, Elgar G, Orioli A, Tanguy M, Giess A, Tischkowitz M, Caulfield MJ, Chinnery PF. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature. 2022:611(7934):105–114. 10.1038/s41586-022-05288-7. PubMed DOI PMC

Woischnik M, Moraes CT. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 2002:12(6):885–893. 10.1101/gr.227202. PubMed DOI PMC

Yao YG, Kong QP, Salas A, Bandelt HJ. Pseudomitochondrial genome haunts disease studies. J Med Genet. 2008:45(12):769–772. 10.1136/jmg.2008.059782. PubMed DOI

Zardoya R, Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol. 1996:13(7):933–942. 10.1093/oxfordjournals.molbev.a025661. PubMed DOI

Zhou X, Xu S, Xu J, Chen B, Zhou K, Yang G. Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the laurasiatherian mammals. Syst Biol. 2012:61(1):150–164. 10.1093/sysbio/syr089. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...