Variation in plastid genomes in the gynodioecious species Silene vulgaris

. 2019 Dec 19 ; 19 (1) : 568. [epub] 20191219

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31856730

Grantová podpora
16-09220S Grantová Agentura České Republiky
Centre for Experimental Plant Biology No. CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund

Odkazy

PubMed 31856730
PubMed Central PMC6921581
DOI 10.1186/s12870-019-2193-0
PII: 10.1186/s12870-019-2193-0
Knihovny.cz E-zdroje

BACKGROUND: Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS: We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS: We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.

Zobrazit více v PubMed

Renner SS. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI

Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 2004;16:S154–S169. doi: 10.1105/tpc.015966. PubMed DOI PMC

Kazama T. Nakamura, Watanabe, M. Sugita KT. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J. 2008;55:619–628. doi: 10.1111/j.1365-313X.2008.03529.x. PubMed DOI

Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, et al. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. New Phytol. 2013;198:408–418. doi: 10.1111/nph.12180. PubMed DOI

Sabar M, Gagliardi D, Balk J, Leaver C. ORFB is a subunit of F1FO-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep. 2003;4:381–386. doi: 10.1038/sj.embor.embor800. PubMed DOI PMC

Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Guan NL, et al. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics. 2007;177:1173–1192. doi: 10.1534/genetics.107.073312. PubMed DOI PMC

Darracq A, Varré JS, Maréchal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, et al. Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol. 2011;3:723–736. doi: 10.1093/gbe/evr042. PubMed DOI PMC

Charlesworth D, Laporte V. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data: from two populations and comparison with Thymus vulgaris. Genetics. 1998;150:1267–1282. PubMed PMC

Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH. Reproductive Systems in the Genus Silene. Evolution of reproductive systems in the genus Silene. Proc R Soc B Biol Sci. 1996;263:409–414. doi: 10.1098/rspb.1996.0062. PubMed DOI

Casimiro-Soriguer I, Buide ML, Narbona E. Diversity of sexual systems within different lineages of the genus Silene. AOB Plants. 2015;7:plv037. doi:10.1093/aobpla/plv037 PubMed PMC

Städler T, Delph LF. Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proc Natl Acad Sci U S A. 2002;99:11730–11735. doi: 10.1073/pnas.182267799. PubMed DOI PMC

Touzet P, Delph LF. The effect of breeding system on polymorphism in mitochondrial genes of silene. Genetics. 2009;181:631–644. doi: 10.1534/genetics.108.092411. PubMed DOI PMC

Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol. 2007;7:7. doi: 10.1186/1471-2148-7-135. PubMed DOI PMC

Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10: e1001241. doi:0.1371/journal.pbio.1001241. PubMed PMC

Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol. 2012;4:294–306. doi: 10.1093/gbe/evs006. PubMed DOI PMC

Sloan DB, Müller K, McCauley DE, Taylor DR, Storchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol. 2012;196:1228–1239. doi: 10.1111/j.1469-8137.2012.04340.x. PubMed DOI

Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae) Mol Phylogenet Evol. 2014;72:82–89. doi: 10.1016/j.ympev.2013.12.004. PubMed DOI

Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Muller K, Walterová J, Pažoutová M. Homologous recombination changes the context of cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics. 2018;19:874. doi: 10.1186/s12864-018-5254-0. PubMed DOI PMC

Stone JD, Koloušková P, Sloan DB, Štorchová H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J Exp Bot. 2017;68:1599–1612. doi: 10.1093/jxb/erx057. PubMed DOI PMC

Abbate JL, Antonovics J. Elevational disease distribution in a natural plant–pathogen system: insights from changes across host populations and climate. Oikos. 2014;123:1126–1136. doi: 10.1111/oik.01001. DOI

Li ZF, Zhang YC, Chen YQ. MiRNAs and lncRNAs in reproductive development. Plant Sci. 2015;238:46–52. doi: 10.1016/j.plantsci.2015.05.017. PubMed DOI

Wu J, Zhang M, Zhang B, Zhang X, Guo L, Qi T, et al. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. BMC Genomics. 2017;18:454. doi: 10.1186/s12864-017-3841-0. PubMed DOI PMC

Hamid R, Tomar RS, Marashi H, Malekzadeh S, Golakiya BA, Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.) Gene. 2018;660:80–91. doi: 10.1016/j.gene.2018.03.070. PubMed DOI

Plöchinger M, Schwenkert S, von Sydow L, Schroder WP, Meurer J. Functional update of the auxiliary TerC and ALB3 in maintenance and assembly of PSII. Front Plant Sci. 2016;7:423. doi: 10.3389/fpls.2016.00423. PubMed DOI PMC

Castandet B, Hotto AM, Strickler SR, Stern DB. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals Remodeling of the organellar transcriptome under heat stress. G3-Genes Genomes Genet. 2016;6:2817–2827. doi: 10.1534/g3.116.030783. PubMed DOI PMC

Hein A, Polsakiewicz M, Knoop V. Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors. BMC Evol Biol. 2016;16:23. doi: 10.1186/s12862-016-0589-0. PubMed DOI PMC

Wang W, Zhang W, Wu Y, Maliga P, Messing J. RNA editing in chloroplasts of Spirodela polyrhiza, an aquatic monocotelydonous species. PLoS One. 2015;10:e0140285. doi: 10.1371/journal.pone.0140285. PubMed DOI PMC

Wang M, Liu H, Ge L, Xing G, Wang M, Weining S, et al. Identification and analysis of RNA editing sites in the chloroplast transcripts of Aegilops tauschii L. Genes. 2017;8:13. doi: 10.3390/genes8010013. PubMed DOI PMC

Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB. Arabidopsis chloroplast quantitative editotype. FEBS Lett. 2013;587:1429–1433. doi: 10.1016/j.febslet.2013.03.022. PubMed DOI

Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D, Chanprasert J, Yoocha T, Jomchai N, et al. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene. 2011;475:104–112. doi: 10.1016/j.gene.2011.01.002. PubMed DOI

Hirose T, Kusumegi T, Tsudzuki T, Sugiura M. RNA editing sites in tobacco chloroplast transcripts : editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet. 1999;262:462–467. doi: 10.1007/s004380051106. PubMed DOI

Lin C, Ko C, Kuo C, Liu M, Schafleitner R. Transcriptional slippage and RNA editing increase the diversity of transcripts in chloroplasts : insight from deep sequencing of Vigna radiata genome and transcriptome. PLoS One. 2015;10:e0129396. doi: 10.1371/journal.pone.0129396. PubMed DOI PMC

Berardi AE, Fields PD, Abbate JL, Taylor DR. Elevational divergence and clinal variation in floral color and leaf chemistry in Silene vulgaris. Am J Bot. 2016;103:1508–1523. doi: 10.3732/ajb.1600106. PubMed DOI

Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol. 2013;82:375–392. doi: 10.1007/s11103-013-0069-5. PubMed DOI

Maier RM, Neckermann K, Igloi GL, Kossel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995;251:614–628. doi: 10.1006/jmbi.1995.0460. PubMed DOI

Sloan DB. Nuclear and mitochondrial RNA editing systems have opposite effects on protein diversity. Biol Lett. 2017;13:20170314. doi: 10.1098/rsbl.2017.0314. PubMed DOI PMC

Kahlau S, Bock R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation : chromoplast gene expression largely serves the production of a single protein. Plant Cell. 2008;20:856–874. doi: 10.1105/tpc.107.055202. PubMed DOI PMC

Valkov VT, Scotti N, Kahlau S, Maclean D, Grillo S, Gray JC, et al. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol. 2009;150:2030–2044. doi: 10.1104/pp.109.140483. PubMed DOI PMC

Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, et al. The chloroplast gene ycf9 encodes a photosystem II ( PSII ) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell. 2001;13:1347–1367. doi: 10.1105/TPC.010001. PubMed DOI PMC

Wei X, Su X, Cao P, Liu X, Chang W, Li M, et al. Structure of spinach photosystem II – LHCII supercomplex at 3.2 Å resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI

Kawabe A, Furihata HY, Tsujino Y, Kawanabe T, Fujii S, Yoshida T. Divergence of RNA editing among Arabidopsis species. Plant Sci. 2019;280:241–247. doi: 10.1016/j.plantsci.2018.12.009. PubMed DOI

Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S. Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res. 2007;35:455–464. doi: 10.1093/nar/gkl1067. PubMed DOI PMC

Chevalier F, Ghulam MM, Rondet D, Pfannschmidt T, Merendino L, Lerbs-Mache S. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/ psbH intergenic region that is dependent on psbN gene expression. Plant Mol Biol. 2015;88:357–367. doi: 10.1007/s11103-015-0325-y. PubMed DOI

Zghidi-Abouzid O, Merendino L, Buhr F, Ghulam MM, Lerbs-Mache S. Characterization of plastid psbT sense and antisense RNAs. Nucleic Acids Res. 2011;39:5379–5387. doi: 10.1093/nar/gkr143. PubMed DOI PMC

Georg J, Honsel A, Rennenberg H, Hess WR. Rapid report a long antisense RNA in plant chloroplasts. New Phytol. 2010;4:615–622. doi: 10.1111/j.1469-8137.2010.03203.x. PubMed DOI

Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S, Stern DB. The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol. 2009;69:541–552. doi: 10.1007/s11103-008-9436-z. PubMed DOI

Manavski N, Schmid LM, Meurer J. RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem. 2018;62:51–64. doi: 10.1042/EBC20170061. PubMed DOI PMC

Hotto AM, Schmitz RJ, Fei Z, Ecker JR, Stern DB. Unexpected diversity of chloroplast noncoding RNAs as revealed by deep sequencing of the Arabidopsis transcriptome. G3-Genes Genomes Genet. 2011;1:559–570. doi: 10.1534/g3.111.000752. PubMed DOI PMC

Chen H, Zhang J, Yuan G, Liu C. Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome. PLoS One. 2014;9:e99314. doi: 10.1371/journal.pone.0099314. PubMed DOI PMC

Marsden-Jones EM, Turrill WB. The bladder campions. London: The Ray Society; 1957.

Hackl T, Hedrich R, Schultz J, Forster F. Sequence analysis proovread : large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30:3004–3011. doi: 10.1093/bioinformatics/btu392. PubMed DOI PMC

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC

Beier S, Thiel T, Munich T, Scholz U, Mascher M. Sequence analysis MISA-web: a web server for microsatellite prediction. Bioiformatics. 2017;33:2583–2585. doi: 0.1093/bioinformatics/btx198. PubMed PMC

Robison TA, Wolf PG. ReFernment: an R package for annotating RNA editing in plastid genomes. Appl Plant Sci. 2019;7:e1216. doi: 10.1002/aps3.1216. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability article fast track. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Simmons MP, Ochoterena H. Society of Systematic Biologists gaps as characters in sequence-based phylogenetic analyses. Syst Biol. 2000;49:369–381. doi: 10.1093/sysbio/49.2.369. PubMed DOI

Salinas DR, Little DP. 2MATRIX : A utility for indel coding and phylogenetic MATRIX concatenation. Appl Plant Sci. 2014;2:1300083. doi: 10.3732/apps.1300083. PubMed DOI PMC

Stamatakis A. RAxML version 8 : a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans. LA: IEEE; p 1–8. 10.1109/GCE.2010.5676129.

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–881. doi: 10.1093/bioinformatics/btq057. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment / map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Thorvaldsdottir P. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2012;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Trapnell C, Pachter L, Salzberg SL. TopHat : discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–1111. doi: 10.1093/bioinformatics/btp120. PubMed DOI PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis A, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–285. doi: 10.1007/s12064-012-0162-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...