Contrasting gene expression patterns during floral induction in two Chenopodium ficifolium genotypes reveal putative flowering regulators
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40184219
PubMed Central
PMC11980483
DOI
10.1080/15592324.2025.2486083
Knihovny.cz E-zdroje
- Klíčová slova
- Flowering, genes with contrasting expression trends, long-day Chenopodium ficifolium, phytohormones, transcriptome,
- MeSH
- Chenopodium * genetika MeSH
- fotoperioda MeSH
- genotyp MeSH
- květy * genetika růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Chenopodium ficifolium is a close diploid relative of the tetraploid crop Chenopodium quinoa. Owing to its reproducible germination and seedling development, it becomes a promising model for studying floral induction, providing a basis for the comparison with C. quinoa. Two C. ficifolium genotypes differ in photoperiodic requirement: C. ficifolium 283 accelerates flowering under long days, whereas C. ficifolium 459 flowers earlier under short days. This study conducted a comprehensive transcriptomic and hormonomic analysis of floral induction in the long-day C. ficifolium 283 and compared the findings to previous experiments with the short-day C. ficifolium. Phytohormone concentrations and gene expression profiles during floral induction were largely similar between the two genotypes. However, a subset of genes exhibited contrasting expression patterns, aligning with the genotypes' differing photoperiodic requirements. These genes, predominantly homologs of flowering-related genes in Arabidopsis thaliana, were activated under long days in C. ficifolium 283 and under short days in C. ficifolium 459. Notably, the contrasting expression of the FLOWERING LOCUS T-LIKE 2-1 gene, which was previously shown to induce precocious flowering in A. thaliana, confirmed its role as a floral activator, despite its low expression levels.
Zobrazit více v PubMed
Mandák B, Krak K, Vít P, Pavlíková Z, Lomonosova MN, Habibi F, Wang L, Jellen EN, Douda J.. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives Plant Ecol, Evol & Syst. 2016;23:18–12. doi: 10.1016/j.ppees.2016.09.004. DOI
Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell & Environ. 2012;35(10):1742–1755. doi: 10.1111/j.1365-3040.2012.02558.x. PubMed DOI
Qin Z, Bai Y, Wu L. Flowering on time: multilayered restrictions on FT in plants. Mol Plant. 2017;10(11):1365–1367. doi: 10.1016/j.molp.2017.09.014. PubMed DOI
Kardailsky I, Shukla V, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science. 1999;286(5446):1962–1965. doi: 10.1126/science.286.5446.1962. PubMed DOI
D’Aloia M, Bonhomme D, Bouche F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011;65(6):972–979. doi: 10.1111/j.1365-313x.2011.04482.x. PubMed DOI
Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science. 2010;330(6009):1397–1400. doi: 10.1126/science.1197004. PubMed DOI
Gendron JM, Staiger D. New horizons in plant photoperiodism. Annu Rev Plant Biol. 2023;74(1):481–509. doi: 10.1146/annurev-arplant-070522-055628. PubMed DOI PMC
Kinoshita A, Richter R, Wellmer F. Genetic and molecular basis of floral induction in arabidopsis thaliana. J Exp Botany. 2020;71(9):2490–2504. doi: 10.1093/jxb/eraa057. PubMed DOI PMC
Patiranage DSR, Asare E, Maldonado-Taipe N, Rey E, Emrani N, Tester M, Jung C. Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant Cell & Environ. 2021;44(8):2565–2579. doi: 10.1111/pce.14071. PubMed DOI
Cháb D, Kolář J, Olson MS, Štorchová H. Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta. 2008;228(6):929–940. doi: 10.1007/s00425-008-0792-3. PubMed DOI
Abeyawardana OAJ, Moravec T, Krüger M, Belz C, Gutiérrez-Larruscain D, Vondráková Z, Eliášova K, Štorchová H. The FLOWERING LOCUS T LIKE 2-1 gene of Chenopodium triggers precocious flowering in Arabidopsis seedlings. Plant Signaling & Behav. 2023;18(1):2239420. doi: 10.1080/15592324.2023.2239420. PubMed DOI PMC
Gutiérrez-Larruscain D, Krüger M, Abeyawardana OAJ, Belz C, Dobrev PI, Vaňková R, Eliášova K, Vondráková Z, Juříček M, Štorchová H. The high concentrations of abscisic, jasmonic, and salicylic acids produced under long days do not accelerate flowering in Chenopodium ficifolium 459. Plant Sci. 2022;320:111279. doi: 10.1016/j.plantsci.2022.111279. PubMed DOI
Subedi M, Neff E, Davis TM. Developing Chenopodium ficifolium as a potential B genome diploid model system for genetic characterization and improvement of allotetraploid quinoa (Chenopodium quinoa). BMC Plant Biol. 2021;21(1):490. doi: 10.1186/s12870-021-03270-5. PubMed DOI PMC
Štorchová H, Hubáčková H, Abeyawardana OAJ, Walterová J, Vondráková Z, Eliášova Mandák K, Mandák B. Chenopodium ficifolium flowers under long days without upregulation of Flowering Locus T (FT) homologs. Planta. 2019;250(6):2111–2125. doi: 10.1007/s00425-019-03285-1. PubMed DOI
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De Novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Seppey M, Manni M, Zdobnov EM. BUSCO: assesing genome assembly and annotation completeness. In: Kollmar M. editor. Gene prediction. Methods in molecular biology. Vol. 1962. New York (NY): Humana; 2019. p. 227–245. PubMed
Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–386. doi: 10.1101/gr.5969107. PubMed DOI PMC
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, et al. The genome of Chenopodium quinoa. Nature. 2017;542(7641):307–312. doi: 10.1038/nature21370. PubMed DOI
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially expressed genes shared by two distinct cytoplasmic male sterility (CMS) types of Silene vulgaris suggest the importance of oxidative stress in pollen abortion. Cells. 2020;9(12):2700. doi: 10.3390/cells9122700. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Jung J, Lee H, Ryu JY, Park C. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Mol Plant. 2016;9(12):1647–1659. doi: 10.1016/j.molp.2016.10.014. PubMed DOI
Oliveira RADC, Andrade AS, Imparato DO, Lima JGS, Almeida RVM, Lima JPMS, Pasquali MADB, Dalmolin RJS. Analysis of Arabidopsis thaliana redox gene network indicates evolutionary expansion of class III peroxidase in plants. Sci Rep. 2019;9(1):15741. doi: 10.1038/s41598-019-52299-y. PubMed DOI PMC
Loades E, Pérez M, Turečkova V, Tarkowská D, Strnad M, Seville A, Nakabayashi K, Leubner-Metzger G. Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front Plant Sci. 2023;14. doi: 10.3389/fpls.2023.1156794. PubMed DOI PMC