Overexpression of the auxin binding protein1 modulates PIN-dependent auxin transport in tobacco cells
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23894588
PubMed Central
PMC3720949
DOI
10.1371/journal.pone.0070050
PII: PONE-D-12-07607
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- buněčné linie MeSH
- FRAP MeSH
- konfokální mikroskopie MeSH
- kyseliny indoloctové metabolismus MeSH
- modulátory membránového transportu metabolismus MeSH
- receptory buněčného povrchu biosyntéza metabolismus MeSH
- rostlinné proteiny biosyntéza metabolismus MeSH
- tabák cytologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- auxin-binding protein 1 MeSH Prohlížeč
- endoplasmic reticulum auxin-binding protein 4, Zea mays MeSH Prohlížeč
- kyseliny indoloctové MeSH
- modulátory membránového transportu MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH
BACKGROUND: Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations. CONCLUSIONS/SIGNIFICANCE: The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.
PLoS One. 2013;8(8). doi:10.1371/annotation/2fa354b5-a4e8-45ca-8eec-342aaa03f2e4 PubMed
Zobrazit více v PubMed
Hertel R, Thomson K-S, Russo V (1972) In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107: 325-340. doi:10.1007/BF00386394. PubMed DOI
Ray PM, Dohrmann U, Hertel R (1977) Specificity of auxin-binding sites on maize coleoptile membranes as possible receptor sites for auxin action. Plant Physiol 60: 585-591. doi:10.1104/pp.60.4.585. PubMed: 16660143. PubMed DOI PMC
Löbler M, Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem 260: 9848-9853. PubMed: 2991266. PubMed
Löbler M, Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). II. Localization of a putative auxin receptor. J Biol Chem 260: 9854-9859. PubMed: 2991267. PubMed
Hesse T, Feldwisch J, Balshüsemann D, Bauw G, Puype M et al. (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J 8: 2453-2461. PubMed: 2555179. PubMed PMC
Schwob E, Choi SY, Simmons C, Migliaccio F, Ilag L et al. (1993) Molecular analysis of three maize 22 kDa auxin-binding protein genes--transient promoter expression and regulatory regions. Plant J 4: 423-432. doi:10.1046/j.1365-313X.1993.04030423.x. PubMed: 7693132. PubMed DOI
Feldwisch J, Zettl R, Hesse F, Schell J, Palme K (1992) An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kda polypeptide. Proc Natl Acad Sci U S A 89: 475-479. doi:10.1073/pnas.89.2.475. PubMed: 11607251. PubMed DOI PMC
Jones AM, Herman EM (1993) KDEL-Containing Auxin-Binding Protein Is Secreted to the Plasma Membrane and Cell Wall. Plant Physiol 101: 595-606. PubMed: 12231715. PubMed PMC
Diekmann W, Venis MA, Robinson DG (1995) Auxins induce clustering of the auxin-binding protein at the surface of maize coleoptile protoplasts. Proc Natl Acad Sci U S A 92: 3425-3429. doi:10.1073/pnas.92.8.3425. PubMed: 11607527. PubMed DOI PMC
Bronsema FBF, van Oostveen WJF, van Lammeren AAM (1998) Immunocytochemical localisation of auxin-binding proteins in coleoptiles and embryos of Zea mays L. Protoplasma 202: 65-75. doi:10.1007/BF01280875. DOI
Napier RM (2001) Models of auxin binding. J Plant Growth Regul 20: 244-254. doi:10.1007/s003440010024. DOI
Chen D, Ren Y, Deng Y, Zhao J (2010) Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J Exp Bot 61: 1853-1867. doi:10.1093/jxb/erq056. PubMed: 20348352. PubMed DOI PMC
Chen D, Deng Y, Zhao J (2012) Distribution and change patterns of free IAA, ABP 1 and PM H+-ATPase during ovary and ovule development of Nicotiana tabacum L. J Plant Physiol 169: 127-136. PubMed
Shimomura S (2006) Identification of a glycosylphosphatidylinositol-anchored plasma membrane protein interacting with the C-terminus of auxin-binding protein 1: A photoaffinity crosslinking study. Plant Mol Biol 60: 663-677. doi:10.1007/s11103-005-5471-1. PubMed: 16649105. PubMed DOI
Barbier-Brygoo H, Ephritikhine G, Klämbt D, Ghislain M, Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A 86: 891-895. doi:10.1073/pnas.86.3.891. PubMed: 16594015. PubMed DOI PMC
Venis MA, Napier RM, Barbierbrygoo H, Maurel C, Perrotrechenmann C et al. (1992).Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proc Natl Acad Sci U.S.A 89: 7208-7212. PubMed PMC
Rück A, Palme K, Venis M, Napier R, Felle R (1993) Patch-clamp analysis establishes arole for an auxin-binding protein in the auxin stimulation of plasma membrane current In Zea mays protoplasts. Plant J 4: 41-46.
Leblanc N, David K, Grosclaude J, Pradier JM, Barbier-Brygoo H, et al. (1999) A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J Biol Chem 274: 28314-28320. PubMed
Takahashi K, Hayashi K, Kinoshita T (2012) Auxin Activates the Plasma Membrane H+-ATPase by Phosphorylation during Hypocotyl Elongation in Arabidopsis. Plant Physiol 159: 632-U713. PubMed PMC
Kim Y, Min J, Kim D, Jung J (2001) A soluble auxin-binding protein, ABP(57) - Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane H+-ATPase. J Biol Chem 276: 10730-10736. PubMed
Steffens B, Feckler C, Palme K, Christian M, Böttger M, et al. (2001) the auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J 27: 591-599. PubMed
David KM, Couch D, Braun N, Brown S, Grosclaude J, et al. (2007) the auxin-binding protein 1 is essential for the control of cell cycle. Plant J 50: 197-206. PubMed
Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, et al. (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282: 1114-1117. PubMed
Chen J, Ullah H, Young J, Sussman M, Jones A (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15: 902-911. PubMed PMC
Braun N, Wyrzykowska J, Muller P, David K, Couch D, et al. (2008) Conditional Repression of AUXIN BINDING PROTEIN1 Reveals that It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco. Plant Cell 20: 2746-2762. PubMed PMC
Tromas A, Braun N, Muller P, Khodus T, Paponov I, et al. (2009) the AUXIN BINDING protein 1 is required for differential auxin responses mediating root growth. PLoS one 4: e6648. PubMed PMC
Xu T, Wen M, Nagawa S, Fu Y, Chen JG, et al. (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143: 99-110. PubMed PMC
Petrášek J, Mravec J, Bouchard R, Blakeslee J, abas M, et al. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914-918. PubMed
Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle traficking. Nature 413: 425-428. PubMed
Dhonukshe P, Aniento F, Hwang I, Robinson D, Mravec J, et al. (2007) clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17: 520-527. PubMed
Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof Y, et al. (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435: 1251-1256. PubMed
Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, et al. (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143: 111-121. PubMed PMC
Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the "HeLa" cell in the cell biology of higher plants. Int Rev Cytol 130: 1-30.
Petrášek J, Zažímalová E (2006) the BY-2 cell line as a tool to study auxin transport. In: Nagata T, Matsuoka K, Inzé D. Biotechnology in agriculture and forestry Tobacco BY-2 cells: from cellular dynamics to omics. Berlin Heidelberg: Springer. Pp. 107-117
Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11: 605-612. PubMed
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, et al. (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591-602. PubMed
Zažímalová E, Křeček P, Skůpa P, Hoyerová K, Petrášek J (2007) Polar transport of the plant hormone auxin - the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci 64: 1621-1637. PubMed PMC
Chen J, Shimomura S, Sitbon F, Sandberg G, Jones A (2001) the role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28: 607-617. PubMed
Rubery PH (1990) Phytotropins: receptors and endogenous ligands. Symp Soc Exp Biol 44: 119-146. PubMed
Petrášek J, Elčkner M, Morris D, Zažímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216: 302-308. PubMed
Campanoni P, Blasius B, Nick P (2003) Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol 133: 1251-1260. PubMed PMC
Dhonukshe P, Mathur J, Hülskamp M, gadella TJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3: 11. PubMed PMC
Maisch J, Nick P (2007) actin is involved in auxin-dependent patterning. Plant Physiol 143: 1695-1704. PubMed PMC
Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532-541. PubMed
Effendi Y, Rietz S, Fischer U, Scherer GF (2011) the heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J 65: 282-294. PubMed
Tromas A, Paponov I, Perrot-Rechenmann C (2010) AUXIN BINDING protein 1: functional and evolutionary aspects. Trends Plant Sci 15: 436-446. PubMed
Mravec J, Kubeš M, Bielach A, Gaykova V, Petrášek J, et al. (2008) Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135: 3345-3354. PubMed
Winicur ZM, Zhang GF, Staehelin LA (1998) Auxin deprivation induces synchronous Golgi differentiation in suspension-cultured tobacco BY-2 cells. Plant Physiol 117: 501-513. PubMed PMC
Sakai A, Miyazawa Y, Kuroiwa T (2004) Studies on dynamic changes of organelles using tobacco BY-2 as the model plant cell line. In: Nagata T, Matsuoka K, Inzé D. Biotechnology in Agriculture and Forestry Tobacco BY-2 cells. Berlin Heidelberg New York: Springer. Pp. 192-216
Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128: 935-950. PubMed PMC
Cox D, Muday G (1994) NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell 6: 1941-1953. PubMed PMC
Nick P, Han M, An G (2009) Auxin Stimulates its Own Transport by Shaping actin Filaments. Plant Physiol 151: 155-167. PubMed PMC
Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, et al. (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131: 254-263. PubMed PMC
Jelínková A, Malínská K, Simon S, Kleine-Vehn J, Pařezová M, et al. (2010) Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J 61: 883-892. PubMed
An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79: 568-570. PubMed PMC
Li J, Brader G, Palva ET (2004) the WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16: 319-331. PubMed PMC
Cháb D, Kolár J, Olson MS, Štorchová H (2008) two flowering locus T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 228: 929-940. PubMed