Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26925228
PubMed Central
PMC4748827
DOI
10.12688/f1000research.7654.1
Knihovny.cz E-zdroje
- Klíčová slova
- AUXIN BINDING PROTEIN 1 (ABP1), Arabidopsis, auxin, knock-down mutant, off-target,
- Publikační typ
- časopisecké články MeSH
The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.
Institut Jean Pierre Bourgin INRA AgroParisTech CNRS Université Paris Saclay Versailles France
Institute of Plant Genetics and Biotechnology Slovak Academy of Sciences Nitra Slovakia
Institute of Science and Technology Austria Klosterneuberg Austria
Zobrazit více v PubMed
Barbier-Brygoo H, Ephritikhine G, Klämbt D, et al. : Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989;86(3):891–895. 10.1073/pnas.86.3.891 PubMed DOI PMC
Batt S, Wilkins MB, Venis MA: Auxin binding to corn coleoptile membranes: Kinetics and specificity. Planta. 1976;130(1):7–13. 10.1007/BF00390838 PubMed DOI
Battaglia R, Brambilla V, Colombo L, et al. : Functional analysis of mads-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev. 2006;123(4):267–276. 10.1016/j.mod.2006.01.002 PubMed DOI
Braun N, Wyrzykowska J, Muller P, et al. : Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell. 2008;20(10):2746–2762. 10.1105/tpc.108.059048 PubMed DOI PMC
Chen JG, Ullah H, Young JC, et al. : ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 2001;15(7):902–911. 10.1101/gad.866201 PubMed DOI PMC
Chen X, Grandont L, Li H, et al. : Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature. 2014;516(7529):90–3. 10.1038/nature13889 PubMed DOI PMC
Conrad U, Fiedler U: Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol. 1998;38(1–2):101–109. 10.1023/A:1006029617949 PubMed DOI
Čovanová M, Sauer M, Rychtář J, et al. : Overexpression of the auxin binding protein1 modulates PIN-dependent auxin transport in tobacco cells. PLoS One. 2013;8(7):e70050. 10.1371/journal.pone.0070050 PubMed DOI PMC
Dai X, Zhang Y, Zhang D, et al. : Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent bsm gene. Nat Plants. 2015;1: 15183. 10.1038/nplants.2015.183 PubMed DOI PMC
David KM, Couch D, Braun N, et al. : The auxin-binding protein 1 is essential for the control of cell cycle. Plant J. 2007;50(2):197–206. 10.1111/j.1365-313X.2007.03038.x PubMed DOI
David KM, Perrot-Rechenmann C: Characterization of a tobacco Bright Yellow 2 cell line expressing the tetracycline repressor at a high level for strict regulation of transgene expression. Plant Physiol. 2001;125(4):1548–1553. 10.1104/pp.125.4.1548 PubMed DOI PMC
Deveaux Y, Peaucelle A, Roberts GR, et al. : The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J. 2003;36(6):918–930. 10.1046/j.1365-313X.2003.01922.x PubMed DOI
Dhonukshe P, Aniento F, Hwang I, et al. : Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol. 2007;17(6):520–527. 10.1016/j.cub.2007.01.052 PubMed DOI
Dunwell JM, Purvis A, Khuri S: Cupins: the most functionally diverse protein superfamily? Phytochemistry. 2004;65(1):7–17. 10.1016/j.phytochem.2003.08.016 PubMed DOI
Enders TA, Strader LC: Auxin activity: Past, present, and future. Am J Bot. 2015;102(2):180–196. 10.3732/ajb.1400285 PubMed DOI PMC
Gao Y, Zhang Y, Zhang D, et al. : Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A. 2015;112(7):2275–2280. 10.1073/pnas.1500365112 PubMed DOI PMC
Grones P, Chen X, Simon S, et al. : Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J Exp Bot. 2015;66(16):5055–5065. 10.1093/jxb/erv177 PubMed DOI
Grones P, Friml J: Auxin transporters and binding proteins at a glance. J Cell Sci. 2015;128(1):1–7. 10.1242/jcs.159418 PubMed DOI
Grunewald W, Friml J: The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J. 2010;29(16):2700–2714. 10.1038/emboj.2010.181 PubMed DOI PMC
Habets ME, Offringa R: Auxin Binding Protein 1: A Red Herring After All? Mol Plant. 2015;8(8):1131–1134. 10.1016/j.molp.2015.04.010 PubMed DOI
Hertel R, Thomson KS, Russo VE: In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta. 1972;107(4):325–340. 10.1007/BF00386394 PubMed DOI
Laufs P, Coen E, Kronenberger J, et al. : Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development. 2003;130(4):785–796. 10.1242/dev.00295 PubMed DOI
Leblanc N, David K, Grosclaude J, et al. : A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J Biol Chem. 1999;274(40):28314–28320. 10.1074/jbc.274.40.28314 PubMed DOI
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔ CT method. Methods. 2001;25(4):402–408. 10.1006/meth.2001.1262 PubMed DOI
Löbler M, Klämbt D: Auxin-binding protein from coleoptile membranes of corn ( Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem. 1985;260(17):9848–9853. PubMed
Maizel A, Weigel D: Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J. 2004;38(1):164–71. 10.1111/j.1365-313X.2004.02027.x PubMed DOI
Meister G, Tuschl T: Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–349. 10.1038/nature02873 PubMed DOI
Michalko J, Dravecká M, Bollenbach T, et al. : Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene [version 1; referees: 3 approved]. F1000Res. 2015;4:1104. 10.12688/f1000research.7143.1 PubMed DOI PMC
Michalko J, Glanc M, Perrot-Rechenmann C, et al. : Dataset 1 in: Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Research. 2016a. Data Source PubMed DOI PMC
Michalko J, Glanc M, Perrot-Rechenmann C, et al. : Dataset 2 in: Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Research. 2016b. Data Source PubMed DOI PMC
Michalko J, Glanc M, Perrot-Rechenmann C, et al. : Dataset 3 in: Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Research. 2016c. Data Source PubMed DOI PMC
Nagawa S, Xu T, Lin D, et al. : ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol. 2012;10(4):e1001299. 10.1371/journal.pbio.1001299 PubMed DOI PMC
Napier RM, David KM, Perrot-Rechenmann C: A short history of auxin-binding proteins. Plant Mol Biol. 2002;49(3–4):339–348. 10.1023/A:1015259130955 PubMed DOI
Napier RM, Venis MA: Auxin action and auxin-binding proteins. New Phytol. 1995;129(2):167–201. 10.1111/j.1469-8137.1995.tb04291.x PubMed DOI
Paciorek T, Zazímalová E, Ruthardt N, et al. : Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435(7046):1251–1256. 10.1038/nature03633 PubMed DOI
Paque S, Mouille G, Grandont L, et al. : AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in Arabidopsis. Plant Cell. 2014;26(1):280–295. 10.1105/tpc.113.120048 PubMed DOI PMC
Peaucelle A, Louvet R, Johansen JN, et al. : Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol. 2008;18(24):1943–1948. 10.1016/j.cub.2008.10.065 PubMed DOI
Petrásek J, Mravec J, Bouchard R, et al. : PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312(5775):914–918. 10.1126/science.1123542 PubMed DOI
Pierre M, Traverso JA, Boisson B, et al. : N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell. 2007;19(9):2804–2821. 10.1105/tpc.107.051870 PubMed DOI PMC
Ray PM, Dohrmann U, Hertel R: Characterization of naphthaleneacetic Acid binding to receptor sites on cellular membranes of maize coleoptile tissue. Plant Physiol. 1977;59(3):357–364. 10.1104/pp.59.3.357 PubMed DOI PMC
Robert S, Kleine-Vehn J, Barbez E, et al. : ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell. 2010;143(1):111–121. 10.1016/j.cell.2010.09.027 PubMed DOI PMC
Roslan HA, Salter MG, Wood CD, et al. : Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 2001;28(2):225–35. 10.1046/j.1365-313X.2001.01146.x PubMed DOI
Sassi M, Ali O, Boudon F, et al. : An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol. 2014;24(19):2335–2342. 10.1016/j.cub.2014.08.036 PubMed DOI
Tromas A, Braun N, Muller P, et al. : The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS One. 2009;4(9):e6648. 10.1371/journal.pone.0006648 PubMed DOI PMC
Tromas A, Paponov I, Perrot-Rechenmann C: AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci. 2010;15(8):436–446. 10.1016/j.tplants.2010.05.001 PubMed DOI
Tromas A, Paque S, Stierlé V, et al. : Auxin-binding protein 1 is a negative regulator of the SCF TIR1/AFB pathway. Nat Commun. 2013;4:2496. 10.1038/ncomms3496 PubMed DOI
Tufarelli C, Stanley JA, Garrick D, et al. : Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet. 2003;34(2):157–165. 10.1038/ng1157 PubMed DOI
Tzafrir I, Pena-Muralla R, Dickerman A, et al. : Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 2004;135(3):1206–1220. 10.1104/pp.104.045179 PubMed DOI PMC
Woo EJ, Marshall J, Bauly J, et al. : Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 2002;21(12):2877–2885. 10.1093/emboj/cdf291 PubMed DOI PMC
Xu T, Dai N, Chen J, et al. : Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science. 2014;343(6174):1025–1028. 10.1126/science.1245125 PubMed DOI PMC
Xu T, Wen M, Nagawa S, et al. : Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell. 2010;143(1):99–110. 10.1016/j.cell.2010.09.003 PubMed DOI PMC
No Time for Transcription-Rapid Auxin Responses in Plants