Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.)
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26951220
DOI
10.1007/s11356-016-6361-6
PII: 10.1007/s11356-016-6361-6
Knihovny.cz E-zdroje
- Klíčová slova
- Algae, Concentration of silver ions in equilibrium with silver nanoparticles, Silver ions, Silver nanoparticles, Toxicity, Uptake of silver by algae,
- MeSH
- antiinfekční látky metabolismus toxicita MeSH
- Chlorella vulgaris účinky léků metabolismus MeSH
- ionty metabolismus MeSH
- kovové nanočástice toxicita MeSH
- roztoky MeSH
- Scenedesmus účinky léků metabolismus MeSH
- stříbro metabolismus toxicita MeSH
- testy toxicity MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- ionty MeSH
- roztoky MeSH
- stříbro MeSH
Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists, physical chemists, and biologists.
Zobrazit více v PubMed
Nanomedicine. 2007 Mar;3(1):95-101 PubMed
Nanotoxicology. 2014 Dec;8(8):833-42 PubMed
Sci Total Environ. 2009 Sep 15;407(19):5243-6 PubMed
Aquat Toxicol. 2010 Jan 31;96(2):159-65 PubMed
PLoS One. 2015 Mar 17;10(3):e0119202 PubMed
J Biol Inorg Chem. 2007 May;12(4):527-34 PubMed
Biotechnol Bioeng. 2004 Aug 20;87(4):451-8 PubMed
Environ Sci Technol. 2010 Dec 15;44(24):9571-7 PubMed
J Colloid Interface Sci. 2010 Jul 1;347(1):43-8 PubMed
Nanotechnol Sci Appl. 2015 Mar 05;8:19-29 PubMed
Environ Sci Technol. 2009 Oct 1;43(19):7285-90 PubMed
Nanotechnology. 2005 Oct;16(10):2346-53 PubMed
Curr Med Chem. 2007;14(24):2590-6 PubMed
J Colloid Interface Sci. 2004 Jul 1;275(1):177-82 PubMed
Environ Sci Technol. 2008 Dec 1;42(23):8959-64 PubMed
Environ Sci Technol. 2010 Jul 15;44(14):5649-54 PubMed
Adv Colloid Interface Sci. 2011 Dec 12;169(2):59-79 PubMed
Environ Sci Pollut Res Int. 2013 May;20(5):3456-63 PubMed
Environ Sci Technol. 2010 Oct 1;44(19):7699-704 PubMed
Environ Sci Technol. 2011 Jul 15;45(14):6032-40 PubMed
Ecotoxicology. 2008 Jul;17(5):372-86 PubMed
Environ Pollut. 2009 Nov;157(11):3034-41 PubMed
J Phys Chem B. 2006 Aug 24;110(33):16248-53 PubMed
Nanotoxicology. 2015;9(6):792-801 PubMed
Environ Sci Technol. 2009 May 1;43(9):3322-8 PubMed
Environ Sci Pollut Res Int. 2012 Jun;19(5):1755-62 PubMed
Environ Sci Pollut Res Int. 2015 Dec;22(24):19990-9 PubMed
Environ Sci Technol. 2009 May 15;43(10):3933-40 PubMed
Ecotoxicol Environ Saf. 2012 Apr;78:80-5 PubMed
Environ Sci Technol. 2011 Jun 1;45(11):4974-9 PubMed
Environ Toxicol Chem. 2011 Apr;30(4):885-92 PubMed
Biomaterials. 2011 Jul;32(21):4704-13 PubMed
Environ Sci Technol. 2010 Mar 15;44(6):2169-75 PubMed
Toxicol Sci. 2010 Jun;115(2):521-34 PubMed