Comparative study of antimicrobial activity of AgBr and Ag nanoparticles (NPs)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
25781988
PubMed Central
PMC4363559
DOI
10.1371/journal.pone.0119202
PII: PONE-D-14-41193
Knihovny.cz E-zdroje
- MeSH
- antiinfekční látky chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- bromidy chemie farmakologie MeSH
- Candida účinky léků MeSH
- kovové nanočástice chemie MeSH
- polymery chemie MeSH
- sloučeniny stříbra chemie farmakologie MeSH
- stříbro chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antiinfekční látky MeSH
- bromidy MeSH
- polymery MeSH
- silver bromide MeSH Prohlížeč
- sloučeniny stříbra MeSH
- stříbro MeSH
The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60-70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120-130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends--the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains.
Zobrazit více v PubMed
Tran QH, Nguyen VQ, Le A- T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4: 033001.
Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176: 1–12. PubMed
Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, et al. Effect of silver-coated urinary catheters: Efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control. 2004;32: 445–450. PubMed
Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23 Suppl 1: 75–78. PubMed
Stevens KNJ, Croes S, Boersma RS, Stobberingh EE, van der Marel C, van der Veen FH, et al. Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials. 2011;32: 1264–1269. 10.1016/j.biomaterials.2010.10.042 PubMed DOI
Devasconcellos P, Bose S, Beyenal H, Bandyopadhyay A, Zirkle LG. Antimicrobial Particulate Silver Coatings on Stainless Steel Implants for Fracture Management. Mater Sci Eng C Mater Biol Appl. 2012;32: 1112–1120. PubMed PMC
Secinti KD, Özalp H, Attar A, Sargon MF. Nanoparticle silver ion coatings inhibit biofilm formation on titanium implants. J Clin Neurosci. 2011;18: 391–395. 10.1016/j.jocn.2010.06.022 PubMed DOI
Perelshtein I, Ruderman Y, Perkas N, Beddow J, Singh G, Vinatoru M, et al. The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties. Cellulose. 2013;20: 1215–1221.
Sataev MS, Koshkarbaeva ST, Tleuova AB, Perni S, Aidarova SB, Prokopovich P. Novel process for coating textile materials with silver to prepare antimicrobial fabrics. Colloids Surfaces A Physicochem Eng Asp. 2014;442: 146–151.
Zahran MK, Ahmed HB, El-Rafie MH. Surface Modification of Cotton Fabrics for Antibacterial Application by Coating with AgNPs-Alginate composite. Carbohydr Polym. 2014;108: 145–152. 10.1016/j.carbpol.2014.03.005 PubMed DOI
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27: 76–83. 10.1016/j.biotechadv.2008.09.002 PubMed DOI
Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res. 2010;12: 1531–1551.
Cui L, Chen P, Chen S, Yuan Z, Yu C, Ren B, et al. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem. 2013;85: 5436–5443. 10.1021/ac400245j PubMed DOI
Lara HH, Ayala-Núñez NV, Ixtepan TLC, Rodríguez PC. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2009;26: 615–621.
Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals. 2011;24: 135–141. 10.1007/s10534-010-9381-6 PubMed DOI
Li X, Lenhart JJ, Walker HW. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir. 2010;26: 16690–16698. 10.1021/la101768n PubMed DOI
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16: 2346–2353. 10.1088/0957-4484/16/10/059 PubMed DOI
Castanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007;86: 2466–2471. PubMed
Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). J Phys Chem C. 2008;112: 5825–5834.
Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27: 341–353. PubMed
Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27: 313–339. PubMed
Nateghi MR, Hajimirzababa H. Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics. J Text Inst. 2014;105: 806–813.
Khurana C, Vala AK, Andhariya N, Pandey OP, Chudasama B. Antibacterial activity of silver: the role of hydrodynamic particle size at nanoscale. J Biomed Mater Res A. 2014;102: 3361–3368. 10.1002/jbm.a.35005 PubMed DOI
Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007;12: 527–534. PubMed
Li R, Kim DD, Yu K, Liang H, Bai C, Li S. Study of fine silver powder from AgOH slurry by hydrothermal techniques. J Mater Process Technol. 2003;137: 55–59.
Deng J-P, Shih W-C, Mou C-Y. Electron Transfer-Induced Hydrogenation of Anthracene Catalyzed by Gold and Silver Nanoparticles. J Phys Chem C. 2007;111: 9723–9728.
Irizarry R, Burwell L, León-Velázquez MS. Preparation and Formation Mechanism of Silver Particles with Spherical Open Structures. Ind Eng Chem Res. 2011;50: 8023–8033.
Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009;1: 1560–1566.
Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surfaces A Physicochem Eng Asp. 2010;372: 172–176.
Khan Z, Talib A. Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentrations. Colloids Surf B Biointerfaces. 2010;76: 164–169. 10.1016/j.colsurfb.2009.10.029 PubMed DOI
Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110: 16248–16253. PubMed
Niitsoo O, Couzis A. Facile synthesis of silver core—silica shell composite nanoparticles. J Colloid Interface Sci. 2011;354: 887–890. 10.1016/j.jcis.2010.11.013 PubMed DOI
Khaydarov R a., Khaydarov RR, Gapurova O, Estrin Y, Scheper T. Electrochemical method for the synthesis of silver nanoparticles. J Nanoparticle Res. 2008;11: 1193–1200.
Rahman MM, Bahadar Khan S, Jamal A, Faisal M, Asiri AM. Fabrication of highly sensitive acetone sensor based on sonochemically prepared as-grown Ag2O nanostructures. Chem Eng J. 2012;192: 122–128.
Chih Y-K, Yang M-C. Simultaneous detection of dopamine and ascorbic acid using silver/silver sulfide modified carbon nanotube electrodes. J Taiwan Inst Chem Eng. 2014;45: 833–839.
Yeo SY, Tan WL, Abu Bakar M, Ismail J. Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: Thermal stability and kinetic analysis of thermal degradation. Polym Degrad Stab. 2010;95: 1299–1304.
Yang L, Liu S-H, Zhang B-F, Xing R-M, Wang H-J, Zhou J-G. The synthesis and crystallization mechanism of protein-conjugated silver sulfide nanowires with hierarchical structure. Mater Lett. 2010;64: 1598–1600.
Chen D, Qiao X, Chen J. Morphology-controlled synthesis of silver nanostructures via a solvothermal method. J Mater Sci Mater Electron. 2011;22: 1335–1339.
Husein MM, Rodil E, Vera JH. A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions. J Colloid Interface Sci. 2005;288: 457–467. PubMed
Abbasi AR, Morsali A, Reza A, Ali A. Synthesis and Characterization of AgBr—Silk Nanocomposite Under Ultrasound Irradiation. J Inorg Organomet Polym Mater. 2010;20: 825–832.
Liang H, Li C, Bai J, Zhang L, Guo L, Huang Y. Synthesis and characterization of AgI nanoparticles in β-CD/PAN nanofibers by electrospinning method. Appl Surf Sci. 2013;270: 617–620.
Chiu C-K, Choi Y-J, Luo T-JM. Formation of AgCl Cubic Crystals Induced by Shrinkage of Sol—Gel Silica Film. Cryst Growth Des. 2012;12: 4727–4732.
Sun C, Chen P, Zhou S. AgCl nanoparticle nanowires fabricated by template method. Mater Lett. 2007;61: 1645–1648.
Husein MM, Rodil E, Vera JHJ. A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions. Langmuir. 2006;22: 2264–2272. PubMed
Ray M, Paria S. Growth Kinetics of Silver Bromide Nanoparticles in Aqueous Nonionic Surfactant Solutions. Ind Eng Chem Res. 2011;50: 11601–11607.
Yang M, Zhao JJ-G, Li JJ-J. Synthesis of porous spherical AgBr nanoparticles in the presence of gelatin using AgCl as the precursor. Colloids Surfaces A Physicochem Eng Asp. 2007;295: 81–84.
Wang H, Lang X, Gao J, Liu W, Wu D, Wu Y, et al. Polyhedral AgBr microcrystals with an increased percentage of exposed {111} facets as a highly efficient visible-light photocatalyst. Chemistry. 2012;18: 4620–4626. 10.1002/chem.201102694 PubMed DOI
Guo Y, Lee J, Maier J. Preparation and characterization of AgI nanoparticles with controlled size, morphology and crystal structure. Solid State Ionics. 2006;177: 2467–2471.
Chen S, Ida T, Kimura K. Thiol-Derivatized AgI Nanoparticles: Synthesis, Characterization, and Optical Properties. J Phys Chem B. 1998;102: 6169–6176.
Hawari NL, Johan MR. Synthesis and characterizations of AgI nanoparticles via mechanochemical reaction. J Alloys Compd. 2011;509: 2001–2006.
Yang M, Zhou K. Synthesis and characterizations of spherical hollow composed of AgI nanoparticle using AgBr as the precursor. Appl Surf Sci. 2011;257: 2503–2507.
Cheng Y, Yan M, Jiang Z. Electrochemical Behavior and Reduction Mechanism of High Valence Silver Oxide in Alkaline Solution. Electrochem Solid-State Lett. 2007;10: F5–F8.
Xu G, Qiao X, Qiu X, Chen J. Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction. Colloids Surfaces A Physicochem Eng Asp. 2008;320: 222–226.
Spirin MG, Brichkin SB, Razumov VF. Phenidone Oxidation during Photoinitiated Chemical Reduction of AgBr Nanocrystals in Water Pools of Reverse Micelles. Colloid J. 2002;64: 364–368.
Chang S, Chen K, Hua Q, Ma Y, Huang W. Evidence for the Growth Mechanisms of Silver Nanocubes and Nanowires. J Phys Chem C. 2011;115: 7979–7986.
Dong X, Ji X, Jing J, Li M, Li J, Yang W. Synthesis of Triangular Silver Nanoprisms by Stepwise Reduction of Sodium Borohydride and Trisodium Citrate. J Phys Chem C. 2010;114: 2070–2074.
Zienkiewicz-Strzałka M, Pasieczna-Patkowska S, Kozak M, Pikus S. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen’s reagent. Appl Surf Sci. 2013;266: 337–343.
Lahtinen RMR, Mertens SFLS, East E, Kiely CJ, Schiffrin DJ. Silver Halide Colloid Precursors for the Synthesis of Monolayer-Protected Clusters. Langmuir. 2004;20: 3289–3296. PubMed
Zhang J, Li X, Liu K, Cui Z, Zhang G, Zhao B, et al. Thin Films of Ag Nanoparticles Prepared from the Reduction of AgI Nanoparticles in Self-Assembled Films. J Colloid Interface Sci. 2002;255: 115–118. PubMed
Halouzka V, Jakubec P, Kvitek L, Likodimos V, Kontos AG, Papadopoulos K, et al. Deposition of Nanostructured Ag Films on Silicon Wafers by Electrochemical/Electrophoretic Deposition for Electrochemical and SERS Sensing. J Electrochem Soc. 2013;160: B54–B59.
Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys. 2005;93: 117–121.
El-Shamy AG, Attia W, Abd El-Kader KM. The optical and mechanical properties of PVA-Ag nanocomposite films. J Alloys Compd. 2014;590: 309–312.
Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN. Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr Polym. 2012;89: 906–913. 10.1016/j.carbpol.2012.04.033 PubMed DOI
Wang H, Qiao X, Chen J, Wang X, Ding S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys. 2005;94: 449–453.
Mdluli PS, Sosibo NM, Mashazi PN, Nyokong T, Tshikhudo RT, Skepu A, et al. Selective adsorption of PVP on the surface of silver nanoparticles: A molecular dynamics study. J Mol Struct. 2011;1004: 131–137.
Zhang Z, Zhao B, Hu L. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes. J Solid State Chem. 1996;121: 105–110.
Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013;24: 1465–1471. 10.1007/s10856-013-4894-5 PubMed DOI
Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). J Phys Chem C. 2008;112: 5825–5834.
Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30: 6333–6340. 10.1016/j.biomaterials.2009.07.065 PubMed DOI
Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol. 2011;162: 542–549. 10.1016/j.resmic.2011.04.009 PubMed DOI
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74: 2171–2178. 10.1128/AEM.02001-07 PubMed DOI PMC
Ghosh IN, Patil SD, Sharma TK, Srivastava SK, Pathania R, Navani NK. Synergistic action of cinnamaldehyde with silver nanoparticles against | IJN. Int J Nanomedicine. 2013;8: 4721–4731. 10.2147/IJN.S49649 PubMed DOI PMC
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52: 662–668. PubMed
Silver Nanoparticles Stabilised by Cationic Gemini Surfactants with Variable Spacer Length