Pitfall trap design affects the capture efficiency of harvestmen (Opiliones) and millipedes (Diplopoda)

. 2021 Jul ; 11 (14) : 9864-9875. [epub] 20210628

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34306669

Pitfall trapping is one of the standard methods used for the capture of ground-active arthropod groups. Despite being frequently used, the standardization of this method is problematic due to the large range of combinations of the individual parameters of pitfall traps with varying efficacy under different environmental conditions. We evaluated the effects of the trap diameter, the fixing fluid, and their combination on the capture efficacy for harvestmen (Opiliones) and millipedes (Diplopoda). We used pitfall traps with three different diameters: 3 cm, 5 cm, and 12 cm, filled with three types of fixing fluids (saturated fluid of NaCl, 10:1 mixture of 70% ethanol and glycerol and 4% formaldehyde). Altogether, 90 traps representing nine combinations of trap diameters and fixing fluid were placed on a mown meadow in spring and autumn intervals for a total of 45 days. We sampled 1,488 individuals representing 11 harvestmen species and 881 individuals representing 11 millipede species. Large (d = 12 cm) and medium (5 cm) traps captured significantly more millipede species and individuals than the small-sized traps (3 cm). The same effect was observed for harvestmen species richness, whereas the medium traps (d = 5 cm) captured the highest mean activity of harvestmen. By analyzing the differences in the body sizes of the studied arthropods in relation to the trap diameter and fluid, we found that larger traps, as well as traps filled with NaCl solution, captured larger harvestmen more frequently than the other trap types. Our results revealed that the combination of larger traps (d = 5 and 12 cm) and formaldehyde was most effective in the capture of both studied groups. However, the disadvantage of formaldehyde is its toxicity.

Zobrazit více v PubMed

Abensperg‐Traun, M. , & Steven, D. (1995). The effects of pitfall trap diameter on ant species richness (Hymenoptera: Formicidae) and ant species composition of the catch in a semi‐arid eucalypt woodland. Australian Journal of Ecology, 20, 282–287. 10.1111/j.1442-9993.1995.tb00540.x DOI

Adis, J. (1979). Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger, 202, 177–184.

Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32–46. 10.1111/j.1442-9993.2001.01070.pp.x DOI

Anderson, M. J. (2004). DISTLM v.5: A FORTRAN computer program to calculate a distance‐based multivariate analysis for a linear model. University of Auckland.

Banerjee, B. (1970). A mathematical model on sampling diplopods using pitfall traps. Oecologia, 4, 102–105. 10.1007/BF00390617 PubMed DOI

Barber, H. S. (1931). Traps for cave‐inhabiting insects. Journal of the Elisha Mitchell Scientific Society, 46, 259–266.

Blower, J. G. (1970). The millipedes of a Cheshire wood. Journal of Zoology, 160, 455–496. 10.1111/j.1469-7998.1970.tb03092.x DOI

Branquart, É. , Kime, R. D. , Dufrêne, M. , & Tavernier, J. (1995). Macroarthropod‐habitat relationships in oak forest in South Belgium. 1. Environments and communities. Pedobiologia, 39, 243–263. Retrieved from http://hdl.handle.net/2078.1/47993

Brennan, K. E. C. , Majer, J. D. , & Reygaert, N. (1999). Determination of an optimal pitfall trap size for sampling spiders in a Western Australian Jarrah Forest. Journal of Insect Conservation, 3, 1–11. 10.1023/A:1009682527012 DOI

Brown, G. R. , & Matthews, I. M. (2016). A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground‐active arthropod biodiversity. Ecology and Evolution, 6, 3953–3964. 10.1002/ece3.2176 PubMed DOI PMC

Churchill, T. B. (1993). Effects of sampling method on composition of a Tasmanian coastal heathland spider assemblage. Memoirs of Queensland Museum, 33, 475–481.

Collett, R. A. , & Fisher, D. O. (2017). Time‐lapse camera trapping as an alternative to pitfall trapping for estimating activity of leaf litter arthropods. Ecology and Evolution, 7, 7527–7533. 10.1002/ece3.3275 PubMed DOI PMC

Curtis, D. J. (1980). Pitfalls in spider community studies (Arachnida, Araneae). The Journal of Arachnology, 8, 271–280.

Dahl, F. (1896). Vergleichende untersuchungen über die lebens‐weise wirbelloser aasfresser. Sitzungberichte – Königlich Preussichen Akademie Der Wissenschaften Zu Berlin, 1, 17–30.

de Oliveira, M. P. A. , Bastos‐Pereira, R. , Torres, S. H. S. , Pereira, T. S. , Batista, F. M. , Alves, J. P. , Iniesta, L. F. M. , Bouzan, R. S. , Chagas, A. , Prous, X. , Pietrobon, T. , & Ferreira, R. L. (2019). Choosing sampling methods for Chilopoda, Diplopoda and Isopoda (Oniscidea): A case study for ferruginous landscapes in Brazilian Amazonia. Applied Soil Ecology, 143, 181–191. 10.1016/j.apsoil.2019.07.012 DOI

Dornelas, M. , Gotelli, N. J. , McGill, B. , Shimadzu, H. , Moyes, F. , Sievers, C. , & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296–299. 10.1126/science.1248484 PubMed DOI

Dufrene, M. , & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366. 10.1890/0012‐9615(1997)067[0345:SAAIST]2.0.CO;2

Fischer, M. , Bossdorf, O. , Gockel, S. , Hänsel, F. , Hemp, A. , Hessenmöller, D. , Korte, G. , Nieschulze, J. , Pfeiffer, S. , Prati, D. , Renner, S. , Schöning, I. , Schumacher, U. , Wells, K. , Buscot, F. , Kalko, E. K. V. , Linsenmair, K. E. , Schulze, E.‐D. , & Weisser, W. W. (2010). Implementing large‐scale and long‐term functional biodiversity research: The Biodiversity Exploratories. Basic and Applied Ecology, 11, 473–485. 10.1016/j.baae.2010.07.009 DOI

Franke, U. , Friebe, B. , & Beck, L. (1988). Methodisches zur ermittlung der siedlungsdichte von bodentieren aus quadratproben und barberfallen. Pedobiologia, 32, 253–264.

Gerlach, A. , Voigtländer, K. , & Heidger, C. H. M. (2009). Influences of the behaviour of epigeic arthropods (Diplopoda, Chilopoda, Carabidae) on the efficiency of pitfall trapping. Soil Organisms, 81, 773–790.

Gotelli, N. J. , & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379–391. 10.1046/j.1461-0248.2001.00230.x DOI

Gotelli, N. J. , & Colwell, R. K. (2011). Estimating species richness. In Magurran A. E., & McGill B. J. (Eds.), Biological diversity: Frontiers in measurement and assessment (pp. 39–54). Oxford University Press.

Greenslade, P. J. M. (1964). Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). Journal of Animal Ecology, 39, 301–310. 10.2307/2632 DOI

Holopainen, J. K. (1992). Catch and sex ratio of Carabidae (Coleoptera) in pitfall traps filled with ethylene glycol or water. Pedobiologia, 36, 257–261.

Hothorn, T. , Bretz, F. , & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 34–363. 10.1002/bimj.200810425 PubMed DOI

Ilić, B. S. , Vujić, V. D. , Jovanović, Z. S. , Pavković‐Lučić, S. B. , Dudić, B. D. , Lučić, L. R. , & Makarov, S. E. (2019). Sexual dimorphism in some morphological traits of three European millipedes (Diplopoda, Julida, Julidae). Animal Biology, 69, 483–496. 10.1163/15707563-20191113 DOI

Inyang, U. E. , & Emosairue, S. O. (2003). Evaluation of sampling techniques for millipedes. Moor Journal of Agricultural Research, 4(2), 230–235.

Knapp, M. , Baranovská, E. , & Jakubec, P. (2016). Effects of bait presence and type of preservative fluid on ground and carrion beetle samples collected by pitfall trapping. Environmental Entomology, 45, 1022–1028. 10.1093/ee/nvw047 PubMed DOI

Knapp, M. , Knappová, J. , Jakubec, P. , Vonička, P. , & Moravec, P. (2020). Incomplete species lists produced by pitfall trapping: How many carabid species and which functional traits are missing? Biological Conservation, 245, 10.1016/j.biocon.2020.108545 DOI

Knapp, M. , & Růžička, J. (2012). The effect of pitfall trap construction and preservative on catch size, species richness and species composition of ground beetles (Coleoptera: Carabidae). European Journal of Entomology, 109, 419–426. 10.14411/eje.2012.054 DOI

Kocourek, P. , Tajovský, K. , & Dolejš, P. (2017). Millipedes of the Czech Republic: Manual for determination of the Czech millipedes (p. 256). Czech Union for Nature Conservation.

Koivula, M. , Kotze, D. J. , Hiisivuori, L. , & Rita, H. (2003). Pitfall trap efficiency: Do trap size, collecting fluid and vegetation structure matter? Entomologica Fennica, 14, 1–14. 10.33338/ef.84167 DOI

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27. 10.1007/BF02289565 DOI

Lang, A. (2000). The pitfalls of pitfalls: A comparison of pitfall trap catches and absolute density estimates of epigeal invertebrate predators in arable land. Journal of Pest Science, 73, 99–106. 10.1007/BF02956438 DOI

Lindtner, J. , Gajdoš, P. , Stašiov, S. , Čiliak, M. , Pech, P. , & Kubovčik, V. (2020). Spider (Araneae) and harvestman (Opiliones) communities are structured by the ecosystem engineering of burrowing mammals. Insect Conservation and Diversity, 13, 262–270. 10.1111/icad.12382 DOI

Lövei, G. L. , & Sunderland, K. D. (1996). Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41, 231–256. 10.1146/annurev.en.41.010196.001311 PubMed DOI

Luff, M. L. (1975). Some features influencing the efficiency of pitfall traps. Oecologia, 4, 345–357. 10.1007/bf00348110 PubMed DOI

Magurran, A. E. , Baillie, S. R. , Buckland, S. T. , Dick, J. M. , Elston, D. A. , Scott, E. M. , Smith, R. I. , Somerfield, P. J. , & Watt, A. D. (2010). Long‐term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends in Ecology and Evolution, 25, 574–582. 10.1016/j.tree.2010.06.016 PubMed DOI

Majer, J. D. (1997). The use of pitfall traps for sampling ants – A critique. Memoirs of Museum Victoria, 56, 323–329. 10.24199/j.mmv.1997.56.20 DOI

Martens, J. (1978). Weberknechte, Opiliones – Spinnentiere, Arachnida. In Senglaub K., Hannemann H. J., & Shumann H. (Eds.), Die Tierwelt Deutschlands (Vol. 64). VEB G. Fischer Verlag.

McArdle, B. H. , & Anderson, M. J. (2001). Fitting multivariate models to community data: A comment on distance‐based redundancy analysis. Ecology, 82, 290–297. 10.1890/0012‐9658(2001)082[0290:fmmtcd]2.0.CO;2

McCravy, K. W. , & Willand, J. E. (2007). Effects of pitfall trap preservative on collections of carabid beetles (Coleoptera: Carabidae). The Great Lakes Entomologist, 40, 154–165. Retrieved from https://scholar.valpo.edu/tgle/vol40/iss2/6

Miklós, L. (Ed.) (2003). Landscape Atlas of the Slovak Republic (1st ed.). Ministry of Environment of the Slovak Republic, Slovak Environmental Agency.

Müller, J. K. (1984). Die bedeutung der fallenfang – methode für die lösung ökologischer fragestellungen. Zoologische Jahrbücher. Abteilung Für Systematik, Geographie und Biologie der Tiere, 111, 281–305.

Pekár, S. (2002). Differential effects of formaldehyde concentration and detergent on catching efficiency of surface active arthropods by pitfall traps. Pedobiologia, 46, 539–547. 10.1078/0031-4056-00158 DOI

Petruška, F. (1969). On possibility of escape of the various components of the epigeic fauna of the fields from pitfall traps containing Formalin. Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, 31, 99–124.

Pinto‐da‐Rocha, R. , Machado, G. , & Gibert, G. (2007). Harvestmen: The biology of opiliones (p. 597). Harvard University Press.

Prasifka, J. R. , Lopez, M. D. , Hellmich, R. L. , Lewis, L. C. , & Dively, G. P. (2007). Comparison of pitfall traps and litter bags for sampling ground‐dwelling arthropods. Journal of Applied Entomology, 131, 115–120. 10.1111/j.1439-0418.2006.01141.x DOI

Privet, K. , Vedel, V. , Fortunel, C. , Orivel, J. , Martinez, Q. , Cerdan, A. , Baraloto, C. H. , & Pétillon, J. (2020). Relative efficiency of pitfall trapping vs. nocturnal hand collecting in assessing soil‐dwelling spider diversity along a structural gradient of neotropical habitats. Diversity, 12, 81. 10.3390/d12020081 DOI

R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R‐project.org/

Roberts, D. W. (2016). Labdsv: Ordination and multivariate analysis for ecology. R package version 1.8‐0. Retrieved from https://CRAN.R‐project.org/package=labdsv

Saska, P. , van der Werf, W. , Hemerik, L. , Luff, M. L. , Hatten, T. D. , & Honek, A. (2013). Temperature effects on pitfall catches of epigeal arthropods: A model and method for bias correction. Journal of Applied Ecology, 50, 181–189. 10.1111/1365-2664.12023 PubMed DOI PMC

Schmidt, M. H. , Clough, Y. , Schulz, W. , Westphalen, A. , & Tscharntke, T. (2006). Capture efficiency and preservation attributes of different fluids in pitfall traps. The Journal of Arachnology, 34, 159–162. 10.1636/T04-95.1 DOI

Sechterová‐Špičáková, E. (1989). Spiders (Araneida) and harvestmen (Opiliones) in the groves II. Acta Universitatis Palackianae Olomoucensis, Facultas Rerum Naturalium, Biologica, 29, 165–184.

Siewers, J. , Schirmel, J. , & Buchholz, S. (2014). The efficiency of pitfall traps as a method of sampling epigeal arthropods in litter rich forest habitats. European Journal of Entomology, 111, 69–74. 10.14411/eje.2014.008 DOI

Skvarla, M. J. , Larson, J. L. , & Dowling, A. P. G. (2014). Pitfalls and preservatives: A review. Journal of Entomological Society of Ontario, 145, 15–43.

Southwood, T. R. E. (1978). Relative Methods of Population Measurement and the Derivation of Absolute Estimates: Land Pitfall and Other Traps Ecological Methods with Particular Reference to Insect Populations (2nd ed.). Chapman and Hall.

Spence, J. R. , & Niemelä, J. (1994). Sampling carabid assemblages with pitfall traps: The madness and the method. Canadian Entomologist, 126, 881–894. 10.4039/Ent126881-3 DOI

Stammer, H. (1948). Die bedeutung der aethylen‐glykolfallen für tierökologiesche und phänologische untersuchungen. Verhandlungen Der Deutschen Zoologischen Gesellschaft, 387–391.

Stanová, V. , & Valachovič M. (Eds.) (2002). Catalogue of biotopes in Slovakia. Daphne – Institute of Applied Ecology.

Stašiov, S. (2015). Ecology of soil organisms (Soil Animals). University Textbook. Technical University in Zvolen.

Štrobl, M. , Saska, P. , Seidl, M. , Kocian, M. , Tajovský, K. , Řezáč, M. , Skuhrovec, J. , Marhoul, P. , Zbuzek, B. , Jakubec, P. , Knapp, M. , & Kadlec, T. (2019). Impact of an invasive tree on arthropod assemblages in woodlots isolated within an intensive agricultural landscape. Diversity and Distribution, 25, 1800–1813. 10.1111/ddi.12981 DOI

Thiele, H. U. (1977). Carabid Beetles in Their Environment: A study on habitat selection by adaptations in physiology and behavior. Springer.

Topping, C. J. , & Sunderland, K. D. (1992). Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. Journal of Applied Ecology, 29, 485–491. 10.2307/2404516 DOI

Törmälä, T. (1982). Evaluation of five methods of sampling field layer arthropods, particularly the leafhopper community, in grassland. Annales Entomologicae Fennicae, 48, 1–16.

Tourinho, A. L. , & Lo‐Man‐Hung, N. (2021). Standardized sampling methods and protocols for harvestman and spider assemblages. In Santos J. C., & Fernandes G. W. (Eds.), Measuring arthropod biodiversity (pp. 365–400). Springer. 10.1007/978-3-030-53226-0_15 DOI

Ward, D. F. , New, T. R. , & Yen, A. L. (2001). Effects of pitfall trap spacing on the abundance, richness and composition of invertebrate catches. Journal of Insect Conservation, 5, 47–53. 10.1023/A:1011317423622 DOI

Wijnhoven, H. (2009). De Nederlandse hooiwagens (Opiliones). Entomologische Tabellen, 3, 1–118.

Work, T. T. , Buddle, C. M. , Korinus, L. M. , & Spence, J. R. (2002). Pitfall trap size and capture of three taxa of litter‐dwelling arthropods: Implications for biodiversity studies. Environmental Entomology, 31, 438–448. 10.1603/0046-225X-31.3.438 DOI

Zou, Y. , Feng, J. , Xue, D. , Sang, W. , & Axmacher, J. C. (2012). Comparison of terrestrial arthropod sampling methods. Journal of Resources and Ecology, 3, 174–182. 10.5814/j.issn.1674-764x.2012.02.010 DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.13985507

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...