Toxicity of TiO2, ZnO, and SiO2 Nanoparticles in Human Lung Cells: Safe-by-Design Development of Construction Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-18972S
Grantová Agentura České Republiky
PubMed
31269717
PubMed Central
PMC6669541
DOI
10.3390/nano9070968
PII: nano9070968
Knihovny.cz E-zdroje
- Klíčová slova
- SiO2 nanoparticles, TiO2 nanoparticles, ZnO nanoparticles, ethyl silicate consolidants, toxicity,
- Publikační typ
- časopisecké články MeSH
Rapid progress in the development of highly efficient nanoparticle-based construction technologies has not always been accompanied by a corresponding understanding of their effects on human health and ecosystems. In this study, we compare the toxicological effects of pristine TiO2, ZnO, SiO2, and coated SiO2 nanoparticles, and evaluate their suitability as additives to consolidants of weathered construction materials. First, water soluble tetrazolium 1 (WST-1) and lactate dehydrogenase (LDH) assays were used to determine the viability of human alveolar A549 cells at various nanoparticle concentrations (0-250 μg mL-1). While the pristine TiO2 and coated SiO2 nanoparticles did not exhibit any cytotoxic effects up to the highest tested concentration, the pristine SiO2 and ZnO nanoparticles significantly reduced cell viability. Second, as all developed nanoparticle-modified consolidants increased the mechanical strength of weathered sandstone, the decisive criterion for the selection of the most suitable nanoparticle additive was as low toxicity as possible. We believe that this approach would be of high importance in the industry, to identify materials representing top functional properties and low toxicity, at an early stage of the product development.
Institute of Experimental Medicine of the CAS Videnska 1083 14220 Prague Czech Republic
J Heyrovsky Institute of Physical Chemistry of the CAS Dolejskova 3 18223 Prague Czech Republic
Zobrazit více v PubMed
Hornyak G., Tibbals H., Dutta J., Moore J. Introduction to Nanoscience and Nanotechnology. 1st ed. CRC Press; Boca Raton, FL, USA: 2008. pp. 847–848.
Miliani C., Velo-Simpson M.L., Scherer G.W. Particle-modified consolidants: A study on the effect of particles on sol-gel properties and consolidation effectiveness. J. Cult. Herit. 2007;8:1–6. doi: 10.1016/j.culher.2006.10.002. DOI
Kislov N., Lahiri J., Verma H., Goswami D.Y., Stefanakos E., Batzill M. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO. Langmuir. 2009;25:3310–3315. doi: 10.1021/la803845f. PubMed DOI
Guérin V.-M., Zouzelka R., Bibova-Lipsova H., Jirkovsky J., Rathousky J., Pauporté T. Experimental and DFT study of the degradation of 4-chlorophenol on hierarchical micro-/nanostructured oxide films. Appl. Catal. B Environ. 2015;168–169:132–140. doi: 10.1016/j.apcatb.2014.12.041. DOI
Zouzelka R., Kusumawati Y., Remzova M., Rathousky J., Pauporte T. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation. J. Hazard. Mater. 2016;317:52–59. doi: 10.1016/j.jhazmat.2016.05.056. PubMed DOI
Zouzelka R., Rathousky J. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 2017;217:466–476. doi: 10.1016/j.apcatb.2017.06.009. DOI
Zouzelka R., Remzova M., Brabec L., Rathousky J. Photocatalytic performance of porous TiO2 layers prepared by quantitative electrophoretic deposition from organic solvents. Appl. Catal. B Environ. 2018;227:70–78. doi: 10.1016/j.apcatb.2018.01.035. DOI
Li Y., Yu Y., Sun Z., Duan J., Tian L., Ho K., Zhou X., Liu X., Yu Y. Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. J. Hazard. Mater. 2014;270:176–186. PubMed
Xu Y., Wang N., Yu Y., Li Y., Li Y.B., Yu Y.B., Zhou X.Q., Sun Z.W. Exposure to Silica Nanoparticles Causes Reversible Damage of the Spermatogenic Process in Mice. PLoS ONE. 2014;9:1–11. doi: 10.1371/journal.pone.0101572. PubMed DOI PMC
Nemmar A., Beegam S., Yuvaraju P., Yasin J., Attoub S., Ali B., Albarwani S. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int. J. Nanomedicine. 2014;9:2779. doi: 10.2147/IJN.S52818. PubMed DOI PMC
Stark W.J. Nanoparticles in biological systems. Angew. Chemie—Int. Ed. 2011;50:1242–1258. doi: 10.1002/anie.200906684. PubMed DOI
Krug H.F., Wick P. Nanotoxicology: An interdisciplinary challenge. Angew. Chemie—Int. Ed. 2011;50:1260–1278. doi: 10.1002/anie.201001037. PubMed DOI
Guo D., Wu C., Jiang H., Li Q., Wang X., Chen B. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B Biol. 2008;93:119–126. doi: 10.1016/j.jphotobiol.2008.07.009. PubMed DOI
Ekstrand-Hammarström B., Akfur C.M., Andersson P.O., Lejon C., Österlund L., Bucht A. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology. 2012;6:623–634. doi: 10.3109/17435390.2011.598245. PubMed DOI
Clemente Z., Castro V.L.S.S., Moura M.A.M., Jonsson C.M., Fraceto L.F. Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat. Toxicol. 2014;147:129–139. doi: 10.1016/j.aquatox.2013.12.024. PubMed DOI
Zouzelka R., Cihakova P., Rihova Ambrozova J., Rathousky J. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.) Environ. Sci. Pollut. Res. 2016;23:8317–8326. doi: 10.1007/s11356-016-6361-6. PubMed DOI
Ohtani B., Li D., Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 2010;216:179–182. doi: 10.1016/j.jphotochem.2010.07.024. DOI
Ritz C., Streibig J.C. Bioassay Analysis using R. J. Stat. Softw. 2015;12:e0146021. PubMed
Li L., Yan J., Wang T., Zhao Z.-J., Zhang J., Gong J., Guan N. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015;6:5881. doi: 10.1038/ncomms6881. PubMed DOI
Arrouvel C., Digne M., Breysse M., Toulhoat H., Raybaud P. Effects of morphology on surface hydroxyl concentration: A DFT comparison of anatase-TiO2 and γ-alumina catalytic supports. J. Catal. 2004;222:152–166. doi: 10.1016/j.jcat.2003.10.016. DOI
Tedesco E., Mičetić I., Micheletti C., Ciappellano S.G., Benetti F., Venturini M. Cytotoxicity and antibacterial activity of a new generation of nanoparticle-based consolidants for restoration and contribution to the safe-by-design implementation. Toxicol. Vitr. 2015;29:1736–1744. doi: 10.1016/j.tiv.2015.07.002. PubMed DOI
Lison D., Martens J.A., Hoet P.H., Napierska D., Thomassen L.C. The nanosilica hazard: another variable entity. Part. Fibre Toxicol. 2010;7:39. PubMed PMC
Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-A nanostructured material. Toxicology. 2012;294:61–79. doi: 10.1016/j.tox.2012.02.001. PubMed DOI
Oh W., Kim S., Choi M., Kim C., Jeong Y.S., Cho B., Hahn J., Jang J. Cellular uptake, cytotoxicity, and innate immune response of silica− titania hollow nanoparticles based on size and surface functionality. ACS Nano. 2010;4:5301–5313. doi: 10.1021/nn100561e. PubMed DOI
Cho W.S., Duffin R., Howie S.E.M., Scotton C.J., Wallace W.A.H., MacNee W., Bradley M., Megson I.L., Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011;8:27. doi: 10.1186/1743-8977-8-27. PubMed DOI PMC
Amara S., Slama I.B., Mrad I., Rihane N., Khemissi W., El Mir L., Rhouma K.B., Abdelmelek H., Sakly M. Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Hum. Exp. Toxicol. 2014;33:1150–1157. doi: 10.1177/0960327113510327. PubMed DOI
Wätjen W., Haase H., Biagioli M., Beyersmann D. Induction of apoptosis in mammalian cells by cadmium and zinc. Environ. Health Perspect. 2002;110:865–867. PubMed PMC
Velintine V.A., Wee B.S., Chin S.F., Kok K.Y. Transformation of zinc oxide nanoparticles under environmentally relevant conditions: influence of pH and ionic strength. Trans. Sci. Technol. 2017;4:123–136.
Remzova M., Sasek P., Frankeova D., Slizkova Z., Rathousky J. Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone. Constr. Build. Mater. 2016;112:674–681. doi: 10.1016/j.conbuildmat.2016.03.001. DOI
Evaluating the Use of TiO2 Nanoparticles for Toxicity Testing in Pulmonary A549 Cells