Evaluating the Use of TiO2 Nanoparticles for Toxicity Testing in Pulmonary A549 Cells
Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36124012
PubMed Central
PMC9482439
DOI
10.2147/ijn.s374955
PII: 374955
Knihovny.cz E-zdroje
- Klíčová slova
- A549 cells, P25, dispersion, nanoparticles, nanotoxicity, titanium dioxide,
- MeSH
- buňky A549 MeSH
- chlorid sodný MeSH
- glutathion MeSH
- kovové nanočástice MeSH
- lidé MeSH
- nanočástice * chemie MeSH
- oxidoreduktasy MeSH
- plíce MeSH
- sérový albumin hovězí * MeSH
- titan MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- glutathion MeSH
- oxidoreduktasy MeSH
- sérový albumin hovězí * MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- voda MeSH
PURPOSE: Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO2 P25), are among the most produced nanomaterials worldwide. The broad use of TiO2 P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO2 P25. However, the reports have provided dissimilar results on caused toxicity. Surprisingly, the physicochemical factors influencing TiO2 P25 action in biological models have not been evaluated in most reports. Thus, the objective of the present study is to characterize the preparation of TiO2 P25 for biological testing in A549 cells and to evaluate their biological effects. METHODS: We determined the size and crystallinity of TiO2 P25. We used four techniques for TiO2 P25 dispersion. We estimated the colloid stability of TiO2 P25 in distilled water, isotonic NaCl solution, and cell culture medium. We applied the optimal dispersion conditions for testing the biological effects of TiO2 P25 (0-100 µg.mL-1) in A549 cells using biochemical assays (dehydrogenase activity, glutathione levels) and microscopy. RESULTS: We found that the use of fetal bovine serum in culture medium is essential to maintain sufficient colloid stability of dispersed TiO2 P25. Under these conditions, TiO2 P25 were unable to induce a significant impairment of A549 cells according to the results of biochemical and microscopy evaluations. When the defined parameters for the use of TiO2 P25 in A549 cells were met, similar results on the biological effects of TiO2 P25 were obtained in two independent cell laboratories. CONCLUSION: We optimized the experimental conditions of TiO2 P25 preparation for toxicity testing in A549 cells. The results presented here on TiO2 P25-induced cellular effects are reproducible. Therefore, our results can be helpful for other researchers using TiO2 P25 as a reference material.
Zobrazit více v PubMed
Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Materialia. 2000;48(1):1–29. doi:10.1016/S1359-6454(99)00285-2 DOI
Bhattacharya K, Kilic G, Costa PM, Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017;11(6):809–826. doi:10.1080/17435390.2017.1363309 PubMed DOI
Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett. 2011;6(1):27. doi:10.1007/s11671-010-9772-1 PubMed DOI PMC
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi:10.1002/smll.200700595 PubMed DOI
Geloen A, Mussabek G, Kharin A, Serdiuk T, Alekseev SA, Lysenko V. Impact of carbon fluoroxide nanoparticles on cell proliferation. Nanomaterials. 2021;11(12):3168. doi:10.3390/nano11123168 PubMed DOI PMC
Hiemstra PS, Grootaers G, van der Does AM, Krul CAM, Kooter IM. Human lung epithelial cell cultures for analysis of inhaled toxicants: lessons learned and future directions. Toxicol In Vitro. 2018;47:137–146. doi:10.1016/j.tiv.2017.11.005 PubMed DOI
Frohlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1091–1107. doi:10.1080/21691401.2018.1479709 PubMed DOI PMC
Yoo K-C, Yoon C-H, Kwon D, et al. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomedicine. 2012;7:1203. doi:10.2147/IJN.S28647 PubMed DOI PMC
Al-Rashed S, Baker A, Ahmad SS, et al. Vincamine, a safe natural alkaloid, represents a novel anticancer agent. Bioorg Chem. 2021;107:104626. doi:10.1016/j.bioorg.2021.104626 PubMed DOI
Lieber M, Todaro G, Smith B, Szakal A, Nelson-Rees W. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17(1):62–70. doi:10.1002/ijc.2910170110 PubMed DOI
Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology. 2015;9(sup1):25–32. doi:10.3109/17435390.2013.855830 PubMed DOI
Wu B, Wu J, Liu S, et al. Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: bioavailability, toxicity and mechanisms. Environ Sci. 2019;6(2):635–645.
Chairuangkitti P, Lawanprasert S, Roytrakul S, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro. 2013;27(1):330–338. doi:10.1016/j.tiv.2012.08.021 PubMed DOI
Baker A, Iram S, Syed A, et al. Fruit derived potentially bioactive bioengineered silver nanoparticles. Int J Nanomedicine. 2021;16:7711. doi:10.2147/IJN.S330763 PubMed DOI PMC
Gómez-Morales J, Fernández-Penas R, Romero-Castillo I, et al. Crystallization, luminescence and cytocompatibility of hexagonal calcium doped terbium phosphate hydrate nanoparticles. Nanomaterials. 2021;11(2):322. doi:10.3390/nano11020322 PubMed DOI PMC
Bianchi MG, Campagnolo L, Allegri M, et al. Length-dependent toxicity of TiO2 nanofibers: mitigation via shortening. Nanotoxicology. 2020;14(4):433–452. doi:10.1080/17435390.2019.1687775 PubMed DOI
Allegri M, Bianchi MG, Chiu M, et al. Shape-related toxicity of titanium dioxide nanofibres. PLoS One. 2016;11(3):e0151365. doi:10.1371/journal.pone.0151365 PubMed DOI PMC
Tabish TA, Pranjol MZI, Hayat H, et al. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology. 2017;28(50):504001. doi:10.1088/1361-6528/aa95a8 PubMed DOI
Zhang D, Zhang L, Zheng W, et al. Investigating biological effects of multidimensional carboxylated carbon-based nanomaterials on human lung A549 cells revealed via non-targeted metabolomics approach. Nanotechnology. 2021;32(1):015704. doi:10.1088/1361-6528/abb55b PubMed DOI
Di Ianni E, Moller P, Vogel UB, Jacobsen NR. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. Mutat Res Genet Toxicol Environ Mutagen. 2021;872:503405. doi:10.1016/j.mrgentox.2021.503405 PubMed DOI
Thirunavukkarasu GK, Bacova J, Monfort O, et al. Critical comparison of aerogel TiO2 and P25 nanopowders: cytotoxic properties, photocatalytic activity and photoinduced antimicrobial/antibiofilm performance. Appl Surf Sci. 2021;579:152145.
Michalkova H, Skubalova Z, Sopha H, et al. Complex cytotoxicity mechanism of bundles formed from self-organised 1-D anodic TiO2 nanotubes layers. J Hazard Mater. 2020;388:122054. doi:10.1016/j.jhazmat.2020.122054 PubMed DOI
Martin A, Sarkar A. Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line. Nanotoxicology. 2017;11(6):713–724. doi:10.1080/17435390.2017.1366574 PubMed DOI
Kose O, Tomatis M, Leclerc L, et al. Impact of the physicochemical features of TiO2 nanoparticles on their in vitro toxicity. Chem Res Toxicol. 2020;33(9):2324–2337. doi:10.1021/acs.chemrestox.0c00106 PubMed DOI
Prasad RY, Wallace K, Daniel KM, et al. Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS nano. 2013;7(3):1929–1942. doi:10.1021/nn302280n PubMed DOI
Tedja R, Lim M, Amal R, Marquis C. Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS nano. 2012;6(5):4083–4093. doi:10.1021/nn3004845 PubMed DOI
Vranic S, Gosens I, Jacobsen NR, et al. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO 2 nanoparticles. Arch Toxicol. 2017;91(1):353–363. doi:10.1007/s00204-016-1673-3 PubMed DOI
Brandão F, Fernández-Bertólez N, Rosário F, et al. Genotoxicity of TiO2 nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH-SY5Y). Nanomaterials. 2020;10(3):412. doi:10.3390/nano10030412 PubMed DOI PMC
Simon-Deckers A, Gouget B, Mayne-L’Hermite M, Herlin-Boime N, Reynaud C, Carriere M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology. 2008;253(1–3):137–146. doi:10.1016/j.tox.2008.09.007 PubMed DOI
Kuku G, Culha M. Investigating the origins of toxic response in TiO(2) nanoparticle-treated cells. Nanomaterials. 2017;7(4):83. doi:10.3390/nano7040083 PubMed DOI PMC
Fresegna AM, Ursini CL, Ciervo A, et al. Assessment of the influence of crystalline form on cyto-genotoxic and inflammatory effects induced by TiO2 nanoparticles on human bronchial and alveolar cells. Nanomaterials. 2021;11(1):253. doi:10.3390/nano11010253 PubMed DOI PMC
Jayaram DT, Kumar A, Kippner LE, et al. TiO 2 nanoparticles generate superoxide and alter gene expression in human lung cells. RSC Adv. 2019;9(43):25039–25047. doi:10.1039/C9RA04037D PubMed DOI PMC
Hansjosten I, Rapp J, Reiner L, et al. Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines. Arch Toxicol. 2018;92(2):633–649. doi:10.1007/s00204-017-2106-7 PubMed DOI
Hanot-Roy M, Tubeuf E, Guilbert A, et al. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol In Vitro. 2016;33:125–135. doi:10.1016/j.tiv.2016.01.013 PubMed DOI
Remzova M, Zouzelka R, Brzicova T, et al. Toxicity of TiO2, ZnO, and SiO2 nanoparticles in human lung cells: safe-by-design development of construction materials. Nanomaterials. 2019;9(7):968. doi:10.3390/nano9070968 PubMed DOI PMC
Monteiller C, Tran L, MacNee W, et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 2007;64(9):609–615. doi:10.1136/oem.2005.024802 PubMed DOI PMC
Ahmad J, Siddiqui M, Akhtar M, et al. Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO2 nanoparticles in A549 cells. Hum Exp Toxicol. 2018;37(5):496–507. doi:10.1177/0960327117714040 PubMed DOI
Tedja R, Marquis C, Lim M, Amal R. Biological impacts of TiO 2 on human lung cell lines A549 and H1299: particle size distribution effects. J Nanoparticle Res. 2011;13(9):3801–3813. doi:10.1007/s11051-011-0302-6 DOI
Jugan M-L, Barillet S, Simon-Deckers A, et al. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology. 2012;6(5):501–513. doi:10.3109/17435390.2011.587903 PubMed DOI
Rosario F, Bessa MJ, Brandao F, et al. Unravelling the potential cytotoxic effects of metal oxide nanoparticles and metal(loid) mixtures on a549 human cell line. Nanomaterials. 2020;10(3):447. doi:10.3390/nano10030447 PubMed DOI PMC
Hsiao IL, Huang YJ. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ. 2011;409(7):1219–1228. doi:10.1016/j.scitotenv.2010.12.033 PubMed DOI
Gea M, Bonetta S, Iannarelli L, et al. Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food Chem Toxicol. 2019;127:89–100. doi:10.1016/j.fct.2019.02.043 PubMed DOI
Knotek P, Navesnik J, Cernohorsky T, Kincl M, Vlcek M, Tichy L. Ablation of (GeS2) 0.3 (Sb2S3) 0.7 glass with an ultra-violet nano-second laser. Mater Res Bull. 2015;64:42–50. doi:10.1016/j.materresbull.2014.12.027 DOI
Kopecká K, Melánová K, Beneš L, Knotek P, Mazur M, Zima V. Exfoliation of layered mixed zirconium 4-sulfophenylphosphonate phenylphosphonates. Dalton Trans. 2020;49(12):3816–3823. doi:10.1039/C9DT03883C PubMed DOI
Oprsal J, Blaha L, Pouzar M, Knotek P, Vlcek M, Hrda K. Assessment of silver nanoparticle toxicity for common carp (Cyprinus carpio) fish embryos using a novel method controlling the agglomeration in the aquatic media. Environ Sci Pollut Res. 2015;22(23):19124–19132. doi:10.1007/s11356-015-5120-4 PubMed DOI
Handl J, Malinak D, Capek J, et al. Effects of charged oxime reactivators on the HK-2 cell line in renal toxicity screening. Chem Res Toxicol. 2021;34(3):699–703. doi:10.1021/acs.chemrestox.0c00489 PubMed DOI
Čapek J, Hauschke M, Brůčková L, Roušar T. Comparison of glutathione levels measured using optimized monochlorobimane assay with those from ortho-phthalaldehyde assay in intact cells. J Pharmacol Toxicol Methods. 2017;88:40–45. doi:10.1016/j.vascn.2017.06.001 PubMed DOI
Majtnerova P, Capek J, Petira F, Handl J, Rousar T. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells. Sci Rep. 2021;11(1):11921. doi:10.1038/s41598-021-91380-3 PubMed DOI PMC
Biola-Clier M, Béal D, Caillat S, et al. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis. 2017;32(1):161–172. doi:10.1093/mutage/gew055 PubMed DOI
Visalli G, Bertuccio MP, Iannazzo D, Piperno A, Pistone A, Di Pietro A. Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicol In Vitro. 2015;29(2):352–362. PubMed
Jiménez-Chávez A, Solorio-Rodríguez A, Escamilla-Rivera V, et al. Inflammatory response in human alveolar epithelial cells after TiO2 NPs or ZnO NPs exposure: inhibition of surfactant protein A expression as an indicator for loss of lung function. Environ Toxicol Pharmacol. 2021;86:103654. doi:10.1016/j.etap.2021.103654 PubMed DOI
Jayaram DT, Payne CK. Intracellular generation of superoxide by TiO2 nanoparticles decreases histone deacetylase 9 (HDAC9), an epigenetic modifier. Bioconjug Chem. 2020;31(5):1354–1361. doi:10.1021/acs.bioconjchem.0c00091 PubMed DOI
Runa S, Lakadamyali M, Kemp ML, Payne CK. TiO2 nanoparticle-induced oxidation of the plasma membrane: importance of the protein Corona. J Phys Chem B. 2017;121(37):8619–8625. doi:10.1021/acs.jpcb.7b04208 PubMed DOI
Ursini CL, Cavallo D, Fresegna AM, et al. Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol. 2014;34(11):1209–1219. doi:10.1002/jat.3038 PubMed DOI
Park E-J, Yi J, Chung K-H, Ryu D-Y, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 2008;180(3):222–229. doi:10.1016/j.toxlet.2008.06.869 PubMed DOI
Taurozzi JS, Hackley VA, Wiesner MR. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations. Nanotoxicology. 2011;5(4):711–729. doi:10.3109/17435390.2010.528846 PubMed DOI
Ranjan S, Dasgupta N, Sudandiradoss C, Ramalingam C, Kumar A. Titanium dioxide nanoparticle–protein interaction explained by docking approach. Int J Nanomedicine. 2018;13:47. doi:10.2147/IJN.S125008 PubMed DOI PMC
Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44(17):6287–6305. doi:10.1039/C4CS00487F PubMed DOI
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10(1):1–33. doi:10.1186/1743-8977-10-15 PubMed DOI PMC
Maier M, Hannebauer B, Holldorff H, Albers P. Does lung surfactant promote disaggregation of nanostructured titanium dioxide? J Occup Environ Med. 2006;48:1314–1320. doi:10.1097/01.jom.0000215405.72714.b2 PubMed DOI
Armand L, Biola-Clier M, Bobyk L, et al. Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: a proteomic view. J Proteomics. 2016;134:163–173. doi:10.1016/j.jprot.2015.08.006 PubMed DOI
Guadagnini R, Halamoda Kenzaoui B, Walker L, et al. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 2015;9(sup1):13–24. doi:10.3109/17435390.2013.829590 PubMed DOI
Bihari P, Vippola M, Schultes S, et al. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol. 2008;5(1):1–14. doi:10.1186/1743-8977-5-14 PubMed DOI PMC
Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86(7):1123–1136. doi:10.1007/s00204-012-0837-z PubMed DOI
Vrček IV, Pavičić I, Crnković T, et al. Does surface coating of metallic nanoparticles modulate their interference with in vitro assays? RSC Adv. 2015;5(87):70787–70807. doi:10.1039/C5RA14100A DOI
Ong KJ, MacCormack TJ, Clark RJ, et al. Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One. 2014;9(3):e90650. doi:10.1371/journal.pone.0090650 PubMed DOI PMC
Ahamed M, Akhtar MJ, Alhadlaq HA. Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol In Vitro. 2019;57:18–27. doi:10.1016/j.tiv.2019.02.004 PubMed DOI
Ekstrand-Hammarström B, Akfur CM, Andersson PO, Lejon C, Österlund L, Bucht A. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B. Nanotoxicology. 2012;6(6):623–634. doi:10.3109/17435390.2011.598245 PubMed DOI
Srivastava R, Rahman Q, Kashyap M, et al. Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum Exp Toxicol. 2013;32(2):153–166. doi:10.1177/0960327112462725 PubMed DOI
Kansara K, Patel P, Shah D, et al. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen. 2015;56(2):204–217. doi:10.1002/em.21925 PubMed DOI
Wang Y, Cui H, Zhou J, et al. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res. 2015;22(7):5519–5530. doi:10.1007/s11356-014-3717-7 PubMed DOI
Funahashi S, Okazaki Y, Ito D, et al. Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells. J Clin Biochem Nutr. 2015;56(2):111–117. doi:10.3164/jcbn.14-92 PubMed DOI PMC
Cavallo D, Fanizza C, Ursini CL, et al. Multi‐walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol. 2012;32(6):454–464. doi:10.1002/jat.2711 PubMed DOI
Srivastava RK, Pant AB, Kashyap MP, et al. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology. 2011;5(2):195–207. doi:10.3109/17435390.2010.503944 PubMed DOI