A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24642846
PubMed Central
PMC3991744
DOI
10.1093/jxb/eru073
PII: eru073
Knihovny.cz E-zdroje
- Klíčová slova
- CONSTANS-like, Chenopodium rubrum, FLOWERING LOCUS T-like, flowering, gene expression, light sensitivity, short-day plant.,
- MeSH
- Arabidopsis MeSH
- Chenopodium genetika růst a vývoj fyziologie MeSH
- florigen metabolismus MeSH
- fotoperioda MeSH
- květy růst a vývoj MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- semenáček růst a vývoj MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- florigen MeSH
- rostlinné proteiny MeSH
The proper timing of flowering is essential for the adaptation of plant species to their ever-changing environments. The central position in a complex regulatory network is occupied by the protein FT, which acts as a florigen. We found that light, following a permissive period of darkness, was essential to induce the floral promoter CrFTL1 and to initiate flowering in seedlings of the short-day plant Chenopodium rubrum L. We also identified two novel CONSTANS-like genes in C. rubrum and observed their rhythmic diurnal and circadian expressions. Strong rhythmicity of expression suggested that the two genes might have been involved in the regulation of photoperiod-dependent processes, despite their inability to complement co mutation in A. thaliana. The CrCOL1 and CrCOL2 genes were downregulated by dark-light transition, regardless of the length of a preceding dark period. The same treatment activated the floral promoter CrFTL1. Light therefore affected CrCOL and CrFTL1 in an opposite manner. Both CrCOL genes and CrFTL1 displayed expression patterns unique among short-day plants. Chenopodium rubrum, the subject of classical physiological studies in the past, is emerging as a useful model for the investigation of flowering at the molecular level.
Zobrazit více v PubMed
Almada R, Cabrera N, Casaretto JA, Ruiz-Lara S, Villanueva EG. 2009. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Reports 28, 1193–1203 PubMed
Amasino R. 2010. Seasonal and developmental timing of flowering. The Plant Journal 61, 1001–1013 PubMed
Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. 2006. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal 46, 462–476 PubMed
Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312, 1040–1043 PubMed
Buzzell RI. 1971. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Canadian Journal of Genetics and Cytology 13, 703–707
Carmel-Goren L, Liu YS, Lifschitz E, Zamir D. 2003. The SELF-PRUNING gene family in tomato. Plant Molecular Biology 52, 1215–1222 PubMed
Cháb D, Kolář J, Olson MS, Štorchová H. 2008. Two Flowering Locus T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 228, 929–940 PubMed
Cheng XF, Wang ZY. 2005. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana . The Plant Journal 43, 758–768 PubMed
Chia TYP, Muller A, Jung C, Mutasa-Gottgens ES. 2008. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. Journal of Experimental Botany 59, 2735–2748 PubMed PMC
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . The Plant Journal 16, 735–743 PubMed
Corbesier L, Vincent C, Jang SH, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis . Science 316, 1030–1033 PubMed
Cumming BG. 1967. Early-flowering plants. In: Wilt FH, Wessels NK, eds. Methods in developmental biology. New York: Crowell Co., 277–299
D’Aloia M, Tamseddak K, Bonhomme D, Bonhomme F, Bernier G, Perilleux C. 2009. Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba . The Plant Journal 59, 962–973 PubMed
Datta S, Hettiarachchi GH, Deng XW, Holm M. 2006. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell 18, 70–84 PubMed PMC
Gonzalez-Schain ND, Diaz-Mendoza M, Zurczak M, Suarez-Lopez P. 2012. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. The Plant Journal 70, 678–690 PubMed
Griffiths S, Dunford RP, Coupland G, Laurie DA. 2003. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis . Plant Physiology 131, 1855–1867 PubMed PMC
Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RW, Fischer R, Prüfer D, Noll GA. 2012. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. The Plant Journal 72, 908–921 PubMed
Hassidim M, Harir Y, Yakir E, Kron Y, Green RM. 2009. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis . Planta 230, 481–491 PubMed
Hayama R, Agashe B, Luley E, King R, Coupland G. 2007. A circadian rhythm set by dusk determines the expression of FT homologues and the short-day photoperiodic flowering response in Pharbitis . The Plant Cell 19, 2988–3000 PubMed PMC
Hecht V, Foucher F, Ferrandiz C, et al. 2005. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology 137, 1420–1434 PubMed PMC
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. 2000. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology 42, 819–832 PubMed
Jaeger KE, Wigge PA. 2007. FT protein acts as a long-range signal in Arabidopsis. Current Biology 17, 1050–1054 PubMed
Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G. 2008. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO Journal 27, 1277–1288 PubMed PMC
Kardailsky I, Shukla V, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. 1999. Activation tagging of the floral inducer FT . Science 286, 1962–1965 PubMed
Knoche K, Kephart D. 1999. Cloning blunt-end Pfu DNA polymerase-generated PCR fragments into pGEM®-T Vector Systems. Promega Notes 71, 10–13
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short day conditions. Plant and Cell Physiology 43, 1096–1105 PubMed
Kong F, Liu B, Xia Z, et al. 2010. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology 154, 1220–1231 PubMed PMC
Landa P, Štorchová H, Hodek J, Vanková R, Podlipná R, Maršik P, Ovesná J, Vaněk T. 2010. Transferases and transporters mediate the detoxification and capacity to tolerate trinitrotoluene in Arabidopsis . Functional and Integrative Genomics 10, 547–559 PubMed
Ledger S, Strayer C, Ashton F, Kay SA, Putterill J. 2001. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. The Plant Journal 26, 15–22 PubMed
Libus J, Štorchová H. 2006. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. BioTechniques 41, 156–164 PubMed
Liu J, Yu J, McIntosh L, Kende H, Zeevaart JA. 2001. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiology 125, 1821–1830 PubMed PMC
Pin PA, Nilsson O. 2012. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell and Environment 35, 1742–1755 PubMed
Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O. 2010. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330, 1397–1400 PubMed
Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc-finger transcription factors. Cell 80, 847–857 PubMed
Robson F, Costa MM, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G. 2001. Functional importace of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal 28, 619–631 PubMed
Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. 1998. Consensus degenerate hybrid oligonucleotide primers for amplification of distantly-related sequences. Nucleic Acids Research 26, 1628–1635 PubMed PMC
Seidlová F, Krekule J. 1973. The negative response of photoperiodic floral induction in Chenopodium rubrum L. to preceding growth. Annals of Botany 37, 605–614
Štorchová H, Hrdličková R, Chrtek J, Jr, Tetera M, Fitze D, Fehrer J. 2000. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84
Suarez-Lopez P, Wheatley K, Robson K, Onouchi H, Valverde F, Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis . Nature 410, 1116–1119 PubMed
Tiwari SB, Shen Y, Chang HC, et al. 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist 187, 57–66 PubMed
Töpfer R, Matzeit V, Gronenborg B, Schell J, Steinbiss HH. 1987. A set of plant expression vector for transcriptional and translational fusions. Nucleic Acids Research 15, 5890. PubMed PMC
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006 PubMed
Veit J, Wagner E, Albrechtova JTP. 2006. Floral dip transformation of Chenopodium rubrum . In: Teixeira da Silva JA, ed. Floriculture, ornamental and plant biotechnology: advances and topical issues. Isleworth, UK: Global Science Books, 49–53
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. 2006. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. The Plant Cell 18, 2971–2984 PubMed PMC
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PloS ONE 2, e718. PubMed PMC
Wisskirchen R. 2006. An experimental study on the growth and flowering of riparian pioneer plants under long- and short-day conditions. Flora 201, 3–23
Yano M, Katayose Y, Ashikari M, et al. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely realated to the Arabidopsis flowering time gene CONSTANS . The Plant Cell 12, 2473–2483 PubMed PMC
Yano M, Kojima S, Takahashi Y, Lin HX, Sasaki T. 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiology 127, 1425–1429 PubMed PMC
Zeevaart JAD. 2008. Leaf-produced floral signals. Current Opinion in Plant Biology 11, 541–547 PubMed