The FLOWERING LOCUS T (FT) gene is the essential integrator of flowering regulatory pathways in angiosperms. The paralogs of the FT gene may perform antagonistic functions, as exemplified by BvFT1, that suppresses flowering in Beta vulgaris, unlike the paralogous activator BvFT2. The roles of FT genes in other amaranths were less investigated. Here, we transformed Arabidopsis thaliana with the FLOWERING LOCUS T like (FTL) genes of Chenopodium ficifolium and found that both CfFTL1 and CfFTL2-1 accelerated flowering, despite having been the homologs of the Beta vulgaris floral promoter and suppressor, respectively. The floral promotive effect of CfFTL2-1 was so strong that it caused lethality when overexpressed under the 35S promoter. CfFTL2-1 placed in an inducible cassette accelerated flowering after induction with methoxyphenozide. The spontaneous induction of CfFTL2-1 led to precocious flowering in some primary transformants even without chemical induction. The CqFT2-1 homolog from Chenopodium quinoa had the same impact on viability and flowering as CfFTL2-1 when transferred to A. thaliana. After the FTL gene duplication in Amaranthaceae, the FTL1 copy maintained the role of floral activator. The second copy FTL2 underwent subsequent duplication and functional diversification, which enabled it to control the onset of flowering in amaranths to adapt to variable environments.
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Chenopodium * genetics metabolism MeSH
- Flowers genetics metabolism MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Gene Expression Regulation, Plant genetics MeSH
- Seedlings metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome. Highly variable satDNA is involved in various genome functions, and a clear link between satellites and phenotypes exists in a wide range of organisms. However, little is known about the origin and temporal dynamics of satDNA. The "library hypothesis" indicates that the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although this hypothesis has received some confirmation, a number of its aspects are still controversial. A recently developed next-generation sequencing (NGS) method allows the determination of the satDNA landscape and could shed light on unresolved issues. Here, we explore low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid species of the Chenopodium album aggregate. The application of the Illumina read assembly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ hybridization allowed the estimation of eight satDNA families within the studied group, six of which were newly described. The obtained set of satDNA families of different origins can be divided into several categories, namely group-specific, lineage-specific and species-specific. In the process of evolution, satDNA families can be transmitted vertically and can be eliminated over time. Moreover, transposable element-derived satDNA families may appear repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained data refute the "library hypothesis", rather than confirming it, and in our opinion, it is more appropriate to speak about "the library of the mechanisms of origin".
- MeSH
- Chenopodium album genetics growth & development MeSH
- Diploidy * MeSH
- DNA, Plant analysis genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Genome, Plant * MeSH
- Gene Library MeSH
- Evolution, Molecular * MeSH
- DNA, Satellite analysis genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Plants of the genus Pleione, originating from hobby growers in the Netherlands and in the Czech Republic, were conspicuous for viral infection, showing symptoms of leaf mosaic or flower breaking. Using Sanger and high throughput sequencing, the full genome sequence of a novel potyvirus was obtained from sequencing data. The genome sequence was annotated and compared to the genome of other potyviruses. The virus was experimentally transmitted by aphids into Pleione and Chenopodium quinoa plants. The name Pleione flower breaking virus (PlFBV) was suggested for the new virus. The presence of the virus was confirmed using RT-PCR, with newly designed primers targeting this new species. The incidence of the virus was contrasted between both countries and might have been influenced by the growth conditions and the exposure of the plants to aphids.
- MeSH
- Molecular Sequence Annotation MeSH
- Chenopodium quinoa virology MeSH
- Insect Vectors MeSH
- Incidence MeSH
- Aphids MeSH
- Plant Diseases virology MeSH
- Orchidaceae virology MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Potyvirus classification genetics isolation & purification MeSH
- Disease Transmission, Infectious MeSH
- Sequence Analysis, DNA MeSH
- Whole Genome Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Netherlands MeSH
The aim of this review was to summarize data regarding amaranth as a potential component of lifestyle modification to improve cardiovascular risk profiles by modifying cardiovascular risk factors such as cholesterol, diabetes, and hypertension. PubMed was searched for appropriate articles. The main inclusion criteria for articles were as follows: interventions with amaranth; conducted in humans or animals or in vitro; and reported serum lipids and lipoprotein levels, and antidiabetic, antihypertensive, and antioxidant abilities. The outcome measures were changes in serum lipids and the presence of antidiabetic, antihypertensive, and antioxidant activity. A total of 33 articles were included herein. Regarding hypolipidemic activity, most studies investigated the effect of intervention with amaranth in animals, and fewer studies were performed in humans. Most studies in animal models demonstrated the ability of amaranth to decrease total cholesterol and low-density lipoprotein cholesterol. Pilot studies in humans were not convincing regarding amaranth's lipid-lowering activity. Based on this search, it is not clear which constituents are potentially responsible for the hypocholesterolemic effect of amaranth. Some authors tend to think that squalene can play a role in this effect, whereas others suggest that different components of amaranth are of greater importance (eg, sterols, oil fractions rich in fatty acids, proteins, amino acids, or fiber) for its hypocholesterolemic effect. It is possible that several constituents are jointly responsible for this action. Regarding the antidiabetic, antihypertensive, and antioxidant activities, most studies were performed in vitro and showed good potential for all three biological effects. Future research should focus on clarifying the effect of amaranth on high-density lipoprotein cholesterol, identifying the constituents responsible for these beneficial effects, and providing more data regarding its use in humans, ideally using randomized controlled trials. The antidiabetic, antihypertensive, and antioxidant activities found in vitro should be confirmed further in animal or human models.
- MeSH
- Amaranthus metabolism MeSH
- Cholesterol blood MeSH
- Diet methods MeSH
- Edible Grain metabolism MeSH
- Cardiovascular Diseases metabolism prevention & control MeSH
- Humans MeSH
- Lipids blood MeSH
- Risk MeSH
- Life Style * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
MAIN CONCLUSION: Chenopodium ficifoliumflowered under long days despite much lower expression ofFLOWERING LOCUS Thomolog than under short days. Frequent duplications of the FLOWERING LOCUS T (FT) gene across various taxonomic lineages resulted in FT paralogs with floral repressor function, whereas others duplicates maintained their floral-promoting role. The FT gene has been confirmed as the inducer of photoperiodic flowering in most angiosperms analyzed to date. We identified all FT homologs in the transcriptome of Chenopodium ficifolium and in the genome of Chenopodium suecicum, which are closely related to diploid progenitors of the tetraploid crop Chenopodium quinoa, and estimated their expression during photoperiodic floral induction. We found that expression of FLOWERING LOCUS T like 1 (FTL1), the ortholog of the sugar beet floral activator BvFT2, correlated with floral induction in C. suecicum and short-day C. ficifolium, but not with floral induction in C. ficifolium with accelerated flowering under long days. This C. ficifolium accession was induced to flowering without the concomitant upregulation of any FT homolog.
Plants mentioned in this study have numerous records in traditional Peruvian medicine being used in treatment of cancer and other diseases likely to be associated with oxidative stress. Amongst the eight plant species tested, only Dysphania ambrosioides exhibited combinatory antioxidant and anti-proliferative effect on a broad spectrum of cancer cells (DPPH and ORAC values = 80.6 and 687.3 μg TE/mg extract, respectively; IC50 against Caco-2, HT-29 and Hep-G2 = 129.2, 69.9 and 130.6, respectively). Alkaloids and phenolic compounds might significantly contribute to anticancer/antioxidant activity of this plant. The results justify the traditional medicinal use of this plant. Our findings further suggest that D. ambrosioides might serve as a prospective material for further development of novel plant-based antioxidant and/or anti-proliferative agents. Detailed analysis of chemical composition together with toxicology assessments and in vivo antioxidant/anti-proliferative activity of this plant should be carried out in order to verify its potential practical use.
- MeSH
- Alkaloids analysis MeSH
- Amaranthaceae chemistry MeSH
- Antioxidants chemistry pharmacology MeSH
- Caco-2 Cells MeSH
- Phenols analysis MeSH
- Antineoplastic Agents, Phytogenic pharmacology MeSH
- Plants, Medicinal chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Oxidative Stress MeSH
- Plant Extracts chemistry pharmacology MeSH
- Medicine, Traditional MeSH
- Check Tag
- Humans MeSH
- Publication type
- Video-Audio Media MeSH
- Journal Article MeSH
- Geographicals
- Peru MeSH
Satellite DNA (satDNA) is the most variable fraction of the eukaryotic genome. Related species share a common ancestral satDNA library and changing of any library component in a particular lineage results in interspecific differences. Although the general developmental trend is clear, our knowledge of the origin and dynamics of satDNAs is still fragmentary. Here, we explore whole genome shotgun Illumina reads using the RepeatExplorer (RE) pipeline to infer satDNA family life stories in the genomes of Chenopodium species. The seven diploids studied represent separate lineages and provide an example of a species complex typical for angiosperms. Application of the RE pipeline allowed by similarity searches a determination of the satDNA family with a basic monomer of ~40 bp and to trace its transformation from the reconstructed ancestral to the species-specific sequences. As a result, three types of satDNA family evolutionary development were distinguished: (i) concerted evolution with mutation and recombination events; (ii) concerted evolution with a trend toward increased complexity and length of the satellite monomer; and (iii) non-concerted evolution, with low levels of homogenization and multidirectional trends. The third type is an example of entire repeatome transformation, thus producing a novel set of satDNA families, and genomes showing non-concerted evolution are proposed as a significant source for genomic diversity.
- MeSH
- Chenopodium genetics MeSH
- Diploidy MeSH
- DNA, Plant genetics MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Genome, Plant MeSH
- Genome Components MeSH
- Evolution, Molecular MeSH
- DNA, Satellite genetics MeSH
- Sequence Analysis, DNA MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
The diversity in human diets that can be reached by proper use of different crops and varieties, including some underutilized ones, is a potentially powerful strategy to ensure food security and prevent serious health problems caused by current diets that are often not fulfilling nutritional requirements. In the framework of this research, the content of tocopherols and tocotrienols, thiamine, riboflavin, pyridoxine, and superoxide dismutase in nine varieties of quinoa, both colored and nonpigmented, obtained from 4 different countries, was investigated and compared to the content of the same vitamins and antioxidants in barley and wheat, both colored and nonpigmented, cultivated in the same experimental field. The aim of this work was to create a crop diversity strategy and encourage the consumption of underutilized crops to ensure that the human diet fulfills nutritional requirements. The contents of vitamin B1, B2, B6, tocopherol, and tocotrienol isomers and superoxide dismutase were determined via HPLC; imaging techniques were used to evaluate the seed color. Quinoa grains had the greatest concentration of tocopherol isomers and activity, represented mainly by α-tocopherol and γ-tocopherol. Wheat and barley seeds had substantial concentrations of tocopherols and tocotrienols. The concentration of riboflavin was greater in barley and wheat than in quinoa, the concentrations of pyridoxine and thiamine were variety-dependent in all grains. Quinoa grains had greater concentration of superoxide dismutase compared to wheat and barley. The richness of each variety and crop should be recognized and used integrally to improve the diet quality. PRACTICAL APPLICATION: Nutritional potential of crops was evaluated from the viewpoint of selected vitamins and antioxidants to create a well-balanced diet. Combined use of both traditional (wheat, barley) and underutilized crops (quinoa) is recommended. HPLC methods and image analysis were successfully used as viable tools for food quality determination.
- MeSH
- alpha-Tocopherol analysis MeSH
- Antioxidants analysis MeSH
- Chenopodium quinoa chemistry MeSH
- Hordeum chemistry MeSH
- Humans MeSH
- Nutritive Value MeSH
- Triticum chemistry MeSH
- Seeds chemistry MeSH
- Thiamine analysis MeSH
- Tocopherols analysis MeSH
- Tocotrienols analysis MeSH
- Vitamin A analysis MeSH
- Vitamin E analysis MeSH
- Vitamins analysis MeSH
- Crops, Agricultural MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Hybridization and polyploidization represent an important speciation mechanism in the diploid-polyploid complex of the Chenopodium album aggregate. In the present study we successfully reconstructed the evolutionary histories of the majority of Eurasian representatives of the C. album aggregate, resulting in the most comprehensive phylogenetic analysis of this taxonomically intricate group of species to date. We applied a combination of classical karyology for precise chromosome number determination, genomic in-situ hybridization for the determination of genomic composition, flow cytometry for the estimation of genome size and sequencing of plastid (cpDNA) and nuclear (ribosomal internal transcribed spacer - ITS and the introns of the FLOWERING LOCUS T LIKE genes - FTL) markers for a phylogenetic reconstruction and the identification of parental genomes in polyploid taxa. The FTL markers identified eight well supported evolutionary lineages. Five of them include at least one diploid species, and the remaining three comprise solely the subgenomes of polyploids that probably represent extinct or unknown diploid taxa. The existence of eight basic diploid lineages explains the origin of seven Eurasian polyploid groups and brings evidence of a nearly unlimited number of subgenomic combinations. The supposed promiscuity generated new species wherever different diploid lineages met each other and gave rise to tetraploid species or whenever they met other tetraploid species to produce hexaploid species throughout their evolutionary history. Finally, we unravelled a surprisingly simple scheme of polyploid species formation within the C. album aggregate. We determined seven groups of polyploid species differing in their origin in either Eurasia or Africa and convincingly demonstrated that (1) all Chenopodium polyploid species under study are of allopolyploid origin, (2) there are eight major monophyletic evolutionary lineages represented by extant or extinct/unknown diploid taxa, (3) those monophyletic lineages represent individual subgenomes, (4) hybridization among the lineages created seven subgenomic combinations of polyploid taxa, (5) taxa represented by particular subgenome combinations were further subjected to diversification, and (6) the majority of species are relatively young, not exceeding the age of the Quaternary period.
- MeSH
- Chenopodium album cytology genetics MeSH
- Chromosomes, Plant genetics MeSH
- Genome Size MeSH
- Phylogeny MeSH
- Genetic Loci MeSH
- Genetic Markers MeSH
- Hybridization, Genetic * MeSH
- Evolution, Molecular MeSH
- Polyploidy * MeSH
- Base Sequence MeSH
- Tetraploidy MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH