• Je něco špatně v tomto záznamu ?

Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers

B. Mandák, K. Krak, P. Vít, MN. Lomonosova, A. Belyayev, F. Habibi, L. Wang, J. Douda, H. Štorchová,

. 2018 ; 129 (-) : 189-201. [pub] 20180829

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012407

Hybridization and polyploidization represent an important speciation mechanism in the diploid-polyploid complex of the Chenopodium album aggregate. In the present study we successfully reconstructed the evolutionary histories of the majority of Eurasian representatives of the C. album aggregate, resulting in the most comprehensive phylogenetic analysis of this taxonomically intricate group of species to date. We applied a combination of classical karyology for precise chromosome number determination, genomic in-situ hybridization for the determination of genomic composition, flow cytometry for the estimation of genome size and sequencing of plastid (cpDNA) and nuclear (ribosomal internal transcribed spacer - ITS and the introns of the FLOWERING LOCUS T LIKE genes - FTL) markers for a phylogenetic reconstruction and the identification of parental genomes in polyploid taxa. The FTL markers identified eight well supported evolutionary lineages. Five of them include at least one diploid species, and the remaining three comprise solely the subgenomes of polyploids that probably represent extinct or unknown diploid taxa. The existence of eight basic diploid lineages explains the origin of seven Eurasian polyploid groups and brings evidence of a nearly unlimited number of subgenomic combinations. The supposed promiscuity generated new species wherever different diploid lineages met each other and gave rise to tetraploid species or whenever they met other tetraploid species to produce hexaploid species throughout their evolutionary history. Finally, we unravelled a surprisingly simple scheme of polyploid species formation within the C. album aggregate. We determined seven groups of polyploid species differing in their origin in either Eurasia or Africa and convincingly demonstrated that (1) all Chenopodium polyploid species under study are of allopolyploid origin, (2) there are eight major monophyletic evolutionary lineages represented by extant or extinct/unknown diploid taxa, (3) those monophyletic lineages represent individual subgenomes, (4) hybridization among the lineages created seven subgenomic combinations of polyploid taxa, (5) taxa represented by particular subgenome combinations were further subjected to diversification, and (6) the majority of species are relatively young, not exceeding the age of the Quaternary period.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012407
003      
CZ-PrNML
005      
20190405100317.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ympev.2018.08.016 $2 doi
035    __
$a (PubMed)30172008
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mandák, Bohumil $u Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic; The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic. Electronic address: mandak@fzp.czu.cz.
245    10
$a Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers / $c B. Mandák, K. Krak, P. Vít, MN. Lomonosova, A. Belyayev, F. Habibi, L. Wang, J. Douda, H. Štorchová,
520    9_
$a Hybridization and polyploidization represent an important speciation mechanism in the diploid-polyploid complex of the Chenopodium album aggregate. In the present study we successfully reconstructed the evolutionary histories of the majority of Eurasian representatives of the C. album aggregate, resulting in the most comprehensive phylogenetic analysis of this taxonomically intricate group of species to date. We applied a combination of classical karyology for precise chromosome number determination, genomic in-situ hybridization for the determination of genomic composition, flow cytometry for the estimation of genome size and sequencing of plastid (cpDNA) and nuclear (ribosomal internal transcribed spacer - ITS and the introns of the FLOWERING LOCUS T LIKE genes - FTL) markers for a phylogenetic reconstruction and the identification of parental genomes in polyploid taxa. The FTL markers identified eight well supported evolutionary lineages. Five of them include at least one diploid species, and the remaining three comprise solely the subgenomes of polyploids that probably represent extinct or unknown diploid taxa. The existence of eight basic diploid lineages explains the origin of seven Eurasian polyploid groups and brings evidence of a nearly unlimited number of subgenomic combinations. The supposed promiscuity generated new species wherever different diploid lineages met each other and gave rise to tetraploid species or whenever they met other tetraploid species to produce hexaploid species throughout their evolutionary history. Finally, we unravelled a surprisingly simple scheme of polyploid species formation within the C. album aggregate. We determined seven groups of polyploid species differing in their origin in either Eurasia or Africa and convincingly demonstrated that (1) all Chenopodium polyploid species under study are of allopolyploid origin, (2) there are eight major monophyletic evolutionary lineages represented by extant or extinct/unknown diploid taxa, (3) those monophyletic lineages represent individual subgenomes, (4) hybridization among the lineages created seven subgenomic combinations of polyploid taxa, (5) taxa represented by particular subgenome combinations were further subjected to diversification, and (6) the majority of species are relatively young, not exceeding the age of the Quaternary period.
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a Chenopodium album $x cytologie $x genetika $7 D027463
650    _2
$a chromozomy rostlin $x genetika $7 D032461
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a genetické lokusy $7 D056426
650    _2
$a genetické markery $7 D005819
650    _2
$a délka genomu $7 D059646
650    12
$a hybridizace genetická $7 D006824
650    _2
$a fylogeneze $7 D010802
650    12
$a polyploidie $7 D011123
650    _2
$a tetraploidie $7 D057891
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Krak, Karol $u Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic; The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic.
700    1_
$a Vít, Petr $u Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic; The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic.
700    1_
$a Lomonosova, Maria N $u Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
700    1_
$a Belyayev, Alexander $u The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic.
700    1_
$a Habibi, Farzaneh $u Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
700    1_
$a Wang, Lei $u State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China.
700    1_
$a Douda, Jan $u Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic.
700    1_
$a Štorchová, Helena $u Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i., The Czech Academy of Sciences, Praha 6 - Lysolaje, CZ-165 00, Czech Republic.
773    0_
$w MED00006574 $t Molecular phylogenetics and evolution $x 1095-9513 $g Roč. 129, č. - (2018), s. 189-201
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30172008 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190405100327 $b ABA008
999    __
$a ok $b bmc $g 1391717 $s 1050712
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 129 $c - $d 189-201 $e 20180829 $i 1095-9513 $m Molecular phylogenetics and evolution $n Mol Phylogenet Evol $x MED00006574
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace