-
Je něco špatně v tomto záznamu ?
Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution
A. Belyayev, J. Josefiová, M. Jandová, R. Kalendar, K. Krak, B. Mandák,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
13-02290S
Grantová Agentura České Republiky
RVO 67985939
Akademie věd České republiky
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
30857296
DOI
10.3390/ijms20051201
Knihovny.cz E-zdroje
- MeSH
- Chenopodium genetika MeSH
- diploidie MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- komponenty genomu MeSH
- molekulární evoluce MeSH
- satelitní DNA genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
Satellite DNA (satDNA) is the most variable fraction of the eukaryotic genome. Related species share a common ancestral satDNA library and changing of any library component in a particular lineage results in interspecific differences. Although the general developmental trend is clear, our knowledge of the origin and dynamics of satDNAs is still fragmentary. Here, we explore whole genome shotgun Illumina reads using the RepeatExplorer (RE) pipeline to infer satDNA family life stories in the genomes of Chenopodium species. The seven diploids studied represent separate lineages and provide an example of a species complex typical for angiosperms. Application of the RE pipeline allowed by similarity searches a determination of the satDNA family with a basic monomer of ~40 bp and to trace its transformation from the reconstructed ancestral to the species-specific sequences. As a result, three types of satDNA family evolutionary development were distinguished: (i) concerted evolution with mutation and recombination events; (ii) concerted evolution with a trend toward increased complexity and length of the satellite monomer; and (iii) non-concerted evolution, with low levels of homogenization and multidirectional trends. The third type is an example of entire repeatome transformation, thus producing a novel set of satDNA families, and genomes showing non-concerted evolution are proposed as a significant source for genomic diversity.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027727
- 003
- CZ-PrNML
- 005
- 20190815114629.0
- 007
- ta
- 008
- 190813s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms20051201 $2 doi
- 035 __
- $a (PubMed)30857296
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Belyayev, Alexander $u The Czech Academy of Sciences, Institute of Botany, Zámek 1, 252 43 Průhonice, Czech Republic. alexander.belyayev@ibot.cas.cz.
- 245 10
- $a Natural History of a Satellite DNA Family: From the Ancestral Genome Component to Species-Specific Sequences, Concerted and Non-Concerted Evolution / $c A. Belyayev, J. Josefiová, M. Jandová, R. Kalendar, K. Krak, B. Mandák,
- 520 9_
- $a Satellite DNA (satDNA) is the most variable fraction of the eukaryotic genome. Related species share a common ancestral satDNA library and changing of any library component in a particular lineage results in interspecific differences. Although the general developmental trend is clear, our knowledge of the origin and dynamics of satDNAs is still fragmentary. Here, we explore whole genome shotgun Illumina reads using the RepeatExplorer (RE) pipeline to infer satDNA family life stories in the genomes of Chenopodium species. The seven diploids studied represent separate lineages and provide an example of a species complex typical for angiosperms. Application of the RE pipeline allowed by similarity searches a determination of the satDNA family with a basic monomer of ~40 bp and to trace its transformation from the reconstructed ancestral to the species-specific sequences. As a result, three types of satDNA family evolutionary development were distinguished: (i) concerted evolution with mutation and recombination events; (ii) concerted evolution with a trend toward increased complexity and length of the satellite monomer; and (iii) non-concerted evolution, with low levels of homogenization and multidirectional trends. The third type is an example of entire repeatome transformation, thus producing a novel set of satDNA families, and genomes showing non-concerted evolution are proposed as a significant source for genomic diversity.
- 650 _2
- $a Chenopodium $x genetika $7 D027462
- 650 _2
- $a DNA rostlinná $x genetika $7 D018744
- 650 _2
- $a satelitní DNA $x genetika $7 D004276
- 650 _2
- $a diploidie $7 D004171
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a komponenty genomu $7 D040481
- 650 _2
- $a genom rostlinný $7 D018745
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a druhová specificita $7 D013045
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Josefiová, Jiřina $u The Czech Academy of Sciences, Institute of Botany, Zámek 1, 252 43 Průhonice, Czech Republic. jirina.josefiova@ibot.cas.cz.
- 700 1_
- $a Jandová, Michaela $u The Czech Academy of Sciences, Institute of Botany, Zámek 1, 252 43 Průhonice, Czech Republic. michaela.jandova@ibot.cas.cz.
- 700 1_
- $a Kalendar, Ruslan $u Department of Agricultural Sciences, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), 00014 Helsinki, Finland. ruslan.kalendar@helsinki.fi. RSE "National Center for Biotechnology", 13/5, Kurgalzhynskoye road, Astana 010000, Kazakhstan. ruslan.kalendar@helsinki.fi.
- 700 1_
- $a Krak, Karol $u The Czech Academy of Sciences, Institute of Botany, Zámek 1, 252 43 Průhonice, Czech Republic. karol.krak@ibot.cas.cz. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic. karol.krak@ibot.cas.cz.
- 700 1_
- $a Mandák, Bohumil $u The Czech Academy of Sciences, Institute of Botany, Zámek 1, 252 43 Průhonice, Czech Republic. bohumil.mandak@ibot.cas.cz. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic. bohumil.mandak@ibot.cas.cz.
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 20, č. 5 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30857296 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190815114857 $b ABA008
- 999 __
- $a ok $b bmc $g 1432876 $s 1066187
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 20 $c 5 $e 20190309 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a 13-02290S $p Grantová Agentura České Republiky
- GRA __
- $a RVO 67985939 $p Akademie věd České republiky
- LZP __
- $a Pubmed-20190813