Pitfalls of X-chromosome inactivation testing in females with Fabry disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35338595
DOI
10.1002/ajmg.a.62728
Knihovny.cz E-zdroje
- Klíčová slova
- Fabry disease heterozygotes, GLA transcript expression, X chromosome inactivation assay, alpha-galactosidase A activity,
- MeSH
- alfa-galaktosidasa genetika MeSH
- chromozomy MeSH
- Fabryho nemoc * diagnóza genetika MeSH
- fenotyp MeSH
- inaktivace chromozomu X genetika MeSH
- lidé MeSH
- mutace MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-galaktosidasa MeSH
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene encoding alpha-galactosidase A (AGAL). The impact of X-chromosome inactivation (XCI) on the phenotype of female FD patients remains unclear. In this study we aimed to determine pitfalls of XCI testing in a cohort of 35 female FD patients. XCI was assessed by two methylation-based and two allele-specific expression assays. The results correlated, although some variance among the four assays was observed. GLA transcript analyses identified crossing-over in three patients and detected mRNA instability in three out of four analyzed null alleles. AGAL activity correlated with XCI pattern and was not influenced by the mutation type or by reduced mRNA stability. Therefore, AGAL activity may help to detect crossing-over in patients with unstable GLA alleles. Tissue-specific XCI patterns in six patients, and age-related changes in two patients were observed. To avoid misinterpretation of XCI results in female FD patients we show that (i) a combination of several XCI assays generates more reliable results and minimizes possible biases; (ii) correlating XCI to GLA expression and AGAL activity facilitates identification of cross-over events; (iii) age- and tissue-related XCI specificities of XCI patterning should be considered.
Zobrazit více v PubMed
Amos-Landgraf, J. M., Cottle, A., Plenge, R. M., Friez, M., Schwartz, C. E., Longshore, J., & Willard, H. F. (2006). X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. The American Journal of Human Genetics, 79(3), 493-499. https://doi.org/10.1086/507565
Blaydon, D., Hill, J., & Winchester, B. (2001). Fabry disease: 20 novel GLA mutations in 35 families. Human Mutation, 18(5), 459. https://doi.org/10.1002/humu.1219
Busque, L., Mio, R., Mattioli, J., Brais, E., Blais, N., Lalonde, Y., Maragh, M., & Gilliland, D. G. (1996). Nonrandom X-inactivation patterns in normal females: Lyonization ratios vary with age. Blood, 88(1), 59-65.
Carrel, L., & Brown, C. J. (2017). When the Lyon(ized chromosome) roars: Ongoing expression from an inactive X chromosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1733), 20160355. https://doi.org/10.1098/rstb.2016.0355
Coop, G., & Przeworski, M. (2007). An evolutionary view of human recombination. Nature Reviews Genetics, 8(1), 23-34. https://doi.org/10.1038/nrg1947
Davies, J. P., Winchester, B. G., & Malcolm, S. (1993). Mutation analysis in patients with the typical form of Anderson-Fabry disease. Human Molecular Genetics, 2(7), 1051-1053. https://doi.org/10.1093/hmg/2.7.1051
Dobrovolny, R., Dvorakova, L., Ledvinova, J., Magage, S., Bultas, J., Lubanda, J. C., Elleder, M., Karetova, D., Pavlikova, M., & Hrebicek, M. (2005). Relationship between X-inactivation and clinical involvement in Fabry heterozygotes. Eleven novel mutations in the α-galactosidase a gene in the Czech and Slovak population. Journal of Molecular Medicine, 83(8), 647-654. https://doi.org/10.1007/s00109-005-0656-2
Echevarria, L., Benistan, K., Toussaint, A., Dubourg, O., Hagege, A. A., Eladari, D., Jabbour, F., Beldjord, C., De Mazancourt, P., & Germain, D. P. (2016). X-chromosome inactivation in female patients with Fabry disease. Clinical Genetics, 89(1), 44-54. https://doi.org/10.1111/cge.12613
Elstein, D., Schachamorov, E., Beeri, R., & Altarescu, G. (2012). X-inactivation in Fabry disease. Gene, 505(2), 266-268. https://doi.org/10.1016/j.gene.2012.06.013
Eng, C. M., Ashley, G. A., Burgert, T. S., Enriquez, A. L., D'Souza, M., & Desnick, R. J. (1997). Fabry disease: Thirty-five mutations in the alpha-galactosidase a gene in patients with classic and variant phenotypes. Molecular medicine (Cambridge, MA), 3(3), 174-182.
Ferreira, S., Reguenga, C., & Oliveira, J. P. (2015). The modulatory effects of the polymorphisms in GLA 5′-Untranslated region upon gene expression are cell-type specific. JIMD Reports, 23, 27-34. https://doi.org/10.1007/8904_2015_424
Hoon, B. d., Monkhorst, K., Riegman, P., Laven, J. S. E., & Gribnau, J. (2015). Buccal swab as a reliable predictor for X inactivation ratio in inaccessible tissues. Journal of Medical Genetics, 52(11), 784-790. https://doi.org/10.1136/jmedgenet-2015-103194
Hossain, M. A., Yanagisawa, H., Miyajima, T., Wu, C., Takamura, A., Akiyama, K., Itagaki, R., Eto, K., Iwamoto, T., Yokoi, T., Kurosawa, K., Numabe, H., & Eto, Y. (2017). The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome. Molecular Genetics and Metabolism, 120(3), 173-179. https://doi.org/10.1016/j.ymgme.2017.01.002
Juchniewicz, P., Kloska, A., Tylki-Szymańska, A., Jakóbkiewicz-Banecka, J., Węgrzyn, G., Moskot, M., Gabig-Cimińska, M., & Piotrowska, E. (2018). Female Fabry disease patients and X-chromosome inactivation. Gene, 641, 259-264. https://doi.org/10.1016/j.gene.2017.10.064
Lenders, M., Hennermann, J. B., Kurschat, C., Rolfs, A., Canaan-Kühl, S., Sommer, C., Üçeyler, N., Kampmann, C., Karabul, N., Giese, A. K., Duning, T., Stypmann, J., Krämer, J., Weidemann, F., Brand, S. M., Wanner, C., & Brand, E. (2016). Multicenter female Fabry study (MFFS)-Clinical survey on current treatment of females with Fabry disease. Orphanet Journal of Rare Diseases, 11(1), 88. https://doi.org/10.1186/s13023-016-0473-4
Lidove, O., Jaussaud, R., & Aractingi, S. (2006). Dermatological and soft-tissue manifestations of Fabry disease: Characteristics and response to enzyme replacement therapy. In A. Mehta, M. Beck, & G. Sunder-Plassmann (Ed.), Fabry disease: Perspectives from 5 years of FOS. Oxford PharmaGenesis. Získáno z http://www.ncbi.nlm.nih.gov/books/NBK11605/
Lukas, J., Giese, A. K., Markoff, A., Grittner, U., Kolodny, E., Mascher, H., Lackner, K. J., Meyer, W., Wree, P., Saviouk, V., & Rolfs, A. (2013). Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in fabry disease. PLoS Genetics, 9(8), e1003632. https://doi.org/10.1371/journal.pgen.1003632
Machado, F. B., Machado, F. B., Faria, M. A., Lovatel, V. L., Alves da Silva, A. F., Radic, C. P., De Brasi, C. D., Rios, Á. F., de Sousa Lopes, S. M., da Silveira, L. S., Ruiz-Miranda, C. R., Ramos, E. S., & Medina-Acosta, E. (2014). 5meCpG epigenetic Marks neighboring a primate-conserved Core promoter short tandem repeat indicate X-chromosome inactivation. PLoS One, 9(7), e103714. https://doi.org/10.1371/journal.pone.0103714
Maier, E. M., Osterrieder, S., Whybra, C., Ries, M., Gal, A., Beck, M., Roscher, A. A., & Muntau, A. C. (2006). Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatrica (Oslo, Norway: 1992). Supplement, 95(451), 30-38. https://doi.org/10.1080/08035320600618809
Mauer, M., Glynn, E., Svarstad, E., Tøndel, C., Gubler, M. C., West, M., Sokolovskiy, A., Whitley, C., & Najafian, B. (2014). Mosaicism of Podocyte involvement is related to Podocyte injury in females with Fabry disease. PLoS One, 9(11), e112188. https://doi.org/10.1371/journal.pone.0112188
Mayes, J. S., Scheerer, J. B., Sifers, R. N., & Donaldson, M. L. (1981). Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry's disease. Clinica Chimica Acta, 112(2), 247-251. https://doi.org/10.1016/0009-8981(81)90384-3
Morrone, A., Cavicchi, C., Bardelli, T., Antuzzi, D., Parini, R., Di Rocco, M., Feriozzi, S., Gabrielli, O., Barone, R., Pistone, G., Spisni, C., Ricci, R., & Zammarchi, E. (2003). Fabry disease: Molecular studies in Italian patients and X inactivation analysis in manifesting carriers. Journal of Medical Genetics, 40(8), e103.
Mossner, M., Nolte, F., Hütter, G., Reins, J., Klaumünzer, M., Nowak, V., Obländer, J., Ackermann, K., Will, S., Röhl, H., Neumann, U., Neumann, M., Hopfer, O., Baldus, C. D., Hofmann, W. K., & Nowak, D. (2013). Skewed X-inactivation patterns in ageing healthy and myelodysplastic haematopoiesis determined by a pyrosequencing based transcriptional clonality assay. Journal of Medical Genetics, 50(2), 108-117. https://doi.org/10.1136/jmedgenet-2012-101093
Musalkova, D., Minks, J., Storkanova, G., Dvorakova, L., & Hrebicek, M. (2015). Identification of novel informative loci for DNA-based X-inactivation analysis. Blood Cells, Molecules & Diseases, 54(2), 210-216. https://doi.org/10.1016/j.bcmd.2014.10.001
Nowak, A., Mechtler, T. P., Hornemann, T., Gawinecka, J., Theswet, E., Hilz, M. J., & Kasper, D. C. (2018). Genotype, phenotype and disease severity reflected by serum LysoGb3 levels in patients with Fabry disease. Molecular Genetics and Metabolism, 123(2), 148-153. https://doi.org/10.1016/j.ymgme.2017.07.002
Ortiz, A., Germain, D. P., Desnick, R. J., Politei, J., Mauer, M., Burlina, A., Eng, C., Hopkin, R. J., Laney, D., Linhart, A., Waldek, S., Wallace, E., Weidemann, F., & Wilcox, W. R. (2018). Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism, 123(4), 416-427. https://doi.org/10.1016/j.ymgme.2018.02.014
Palecek, T., Honzikova, J., Poupetova, H., Vlaskova, H., Kuchynka, P., Golan, L., Magage, S., & Linhart, A. (2014). Prevalence of Fabry disease in male patients with unexplained left ventricular hypertrophy in primary cardiology practice: Prospective Fabry cardiomyopathy screening study (FACSS). Journal of Inherited Metabolic Disease, 37(3), 455-460. https://doi.org/10.1007/s10545-013-9659-2
Pang, S., Chen, D., Zhang, A., Qin, X., & Yan, B. (2012). Genetic analysis of the LAMP-2 gene promoter in patients with sporadic Parkinson's disease. Neuroscience Letters, 526(1), 63-67. https://doi.org/10.1016/j.neulet.2012.07.044
Ploos van Amstel, J. K., Jansen, R. P., de Jong, J. G., Hamel, B. C., & Wevers, R. A. (1994). Six novel mutations in the alpha-galactosidase a gene in families with Fabry disease. Human Molecular Genetics, 3(3), 503-505. https://doi.org/10.1093/hmg/3.3.503
Racchi, O., Mangerini, R., Rapezzi, D., Rolfo, M., Gaetani, G. F., & Ferraris, A. M. (1998). X chromosome inactivation patterns in normal females. Blood Cells, Molecules & Diseases, 24(4), 439-447. https://doi.org/10.1006/bcmd.1998.0213
Řeboun, M., Rybová, J., Dobrovolný, R., Včelák, J., Veselková, T., Štorkánová, G., Mušálková, D., Hřebíček, M., Ledvinová, J., Magner, M., Zeman, J., Pešková, K., & Dvošáková, L. (2016). X-chromosome inactivation analysis in different cell types and induced pluripotent stem cells elucidates the disease mechanism in a rare case of Mucopolysaccharidosis type II in a female. Folia Biologica, 62(2), 82-89.
Redonnet-Vernhet, I., Ploos van Amstel, J. K., Jansen, R. P., Wevers, R. A., Salvayre, R., & Levade, T. (1996). Uneven X inactivation in a female monozygotic twin pair with Fabry disease and discordant expression of a novel mutation in the alpha-galactosidase a gene. Journal of Medical Genetics, 33(8), 682-688.
Rossanti, R., Nozu, K., Fukunaga, A., Nagano, C., Horinouchi, T., Yamamura, T., Sakakibara, N., Minamikawa, S., Ishiko, S., Aoto, Y., Okada, E., Ninchoji, T., Kato, N., Maruyama, S., Kono, K., Nishi, S., Iijima, K., & Fujii, H. (2021). X-chromosome inactivation patterns in females with Fabry disease examined by both ultra-deep RNA sequencing and methylation-dependent assay. Clinical and Experimental Nephrology, 25, 1224-1230. https://doi.org/10.1007/s10157-021-02099-4
Saito, S., Ohno, K., & Sakuraba, H. (2013). Comparative study of structural changes caused by different substitutions at the same residue on α-galactosidase a. PLoS One, 8(12), e84267. https://doi.org/10.1371/journal.pone.0084267
Rossanti, R., Nozu, K., Fukunaga, A., Nagano, C., Horinouchi, T., Yamamura, T., Sakakibara, N., Minamikawa, S., Ishiko, S., Aoto, Y., Okada, E., Ninchoji, T., Kato, N., Maruyama, S., Kono, K., Nishi, S., Iijima, K., & Fujii, H. (1990). Identification of point mutations in the alpha-galactosidase a gene in classical and atypical hemizygotes with Fabry disease. American Journal of Human Genetics, 47(5), 784-789.
Sandovici, I., Naumova, A. K., Leppert, M., Linares, Y., & Sapienza, C. (2004). A longitudinal study of X-inactivation ratio in human females. Human Genetics, 115(5), 387-392. https://doi.org/10.1007/s00439-004-1177-8
Shabbeer, J., Robinson, M., & Desnick, R. J. (2005). Detection of alpha-galactosidase a mutations causing Fabry disease by denaturing high performance liquid chromatography. Human Mutation, 25(3), 299-305. https://doi.org/10.1002/humu.20144
Shabbeer, J., Yasuda, M., Benson, S. D., & Desnick, R. J. (2006). Fabry disease: Identification of 50 novel alpha-galactosidase a mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Human Genomics, 2(5), 297-309. https://doi.org/10.1186/1479-7364-2-5-297
Shabbeer, J., Yasuda, M., Luca, E., & Desnick, R. J. (2002). Fabry disease: 45 novel mutations in the α-galactosidase a gene causing the classical phenotype. Molecular Genetics and Metabolism, 76(1), 23-30. https://doi.org/10.1016/S1096-7192(02)00012-4
Sharp, A., Robinson, D., & Jacobs, P. (2000). Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Human Genetics, 107(4), 343-349.
Stenson, P. D., Mort, M., Ball, E. V., Chapman, M., Evans, K., Azevedo, L., Hayden, M., Heywood, S., Millar, D. S., Phillips, A. D., & Cooper, D. N. (2020). The human gene mutation database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Human Genetics, 139(10), 1197-1207. https://doi.org/10.1007/s00439-020-02199-3
Swierczek, S. I., Piterkova, L., Jelinek, J., Agarwal, N., Hammoud, S., Wilson, A., Hickman, K., Parker, C. J., Cairns, B. R., & Prchal, J. T. (2012). Methylation of AR locus does not always reflect X chromosome inactivation state. Blood, 119(13), e100-e109. https://doi.org/10.1182/blood-2011-11-390351
Yanagisawa, H., Hossain, M. A., Miyajima, T., Nagao, K., Miyashita, T., & Eto, Y. (2019). Dysregulated DNA methylation of GLA gene was associated with dysfunction of autophagy. Molecular Genetics and Metabolism, 126(4), 460-465. https://doi.org/10.1016/j.ymgme.2019.03.003
Clinical management of female patients with Fabry disease based on expert consensus