Chromosome-Scale Genome Assembly of the Hexaploid Taiwanese Goosefoot "Djulis" (Chenopodium formosanum)

. 2022 Aug 03 ; 14 (8) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35881674

Djulis (Chenopodium formosanum Koidz.) is a crop grown since antiquity in Taiwan. It is a BCD-genome hexaploid (2n = 6x = 54) domesticated form of lambsquarters (C. album L.) and a relative of the allotetraploid (AABB) C. quinoa. As with quinoa, djulis seed contains a complete protein profile and many nutritionally important vitamins and minerals. While still sold locally in Taiwanese markets, its traditional culinary uses are being lost as diets of younger generations change. Moreover, indigenous Taiwanese peoples who have long safeguarded djulis are losing their traditional farmlands. We used PacBio sequencing and Hi-C-based scaffolding to produce a chromosome-scale, reference-quality assembly of djulis. The final genome assembly spans 1.63 Gb in 798 scaffolds, with 97.8% of the sequence contained in 27 scaffolds representing the nine haploid chromosomes of each sub-genome of the species. Benchmarking of universal, single-copy orthologs indicated that 98.5% of the conserved orthologous genes for Viridiplantae are complete within the assembled genome, with 92.9% duplicated, as expected for a polyploid. A total of 67.8% of the assembly is repetitive, with the most common repeat being Gypsy long terminal repeat retrotransposons, which had significantly expanded in the B sub-genome. Gene annotation using Iso-Seq data from multiple tissues identified 75,056 putative gene models. Comparisons to quinoa showed strong patterns of synteny which allowed for the identification of homoeologous chromosomes, and sub-genome-specific sequences were used to assign homoeologs to each sub-genome. These results represent the first hexaploid genome assembly and the first assemblies of the C and D genomes of the Chenopodioideae subfamily.

Zobrazit více v PubMed

Bandi V, Gutwin C. 2020. Interactive exploration of genomic conservation. In: Proceedings of the 46th Graphics Interface Conference on Proceedings of Graphics Interface 2020 (GI’20). Waterloo, CAN: Canadian Human-Computer Communications Society.

Belyayev A, et al. . 2020. The major satellite DNA families of the diploid Chenopodium album aggregate species: arguments for and against the “library hypothesis.”. PloS ONE. 15:e0241206. PubMed PMC

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573–580. PubMed PMC

Chen SY, Chu CC, Chyau CC, Yang JW, Duh PD. 2019. Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. Food Biosci. 32:100469.

Chio EH, et al. . 2013. Toxicity and repellence of Taiwanese indigenous djulis, Chenopodium formosaneum, against Aedes albopictus (Diptera: Culicidae) and Forcipomyia taiwana (Diptera: Ceratopogonidae). J Pest Sci. 86:705–712.

Chu CC, et al. . 2016. Protective effect of djulis (Chenopodium formosanum) and its bioactive compounds against carbon tetrachloride-induced liver injury, in vivo. J Funct Food. 26:585–597.

Chuang KJ, Chen ZJ, Cheng CL, Hong GB. 2018. Investigation of the antioxidant capacity, insecticidal ability and oxidation stability of Chenopodium formosanum seed extract. Int J Mol Sci. 19:2726. PubMed PMC

Chyau CC, Chu CC, Chen SY, Duh PD. 2018. The inhibitory effects of Djulis (Chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes. Molecules 23:1780. PubMed PMC

Danecek P, et al. . 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. PubMed PMC

Flynn JM, et al. . 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc National Acad Sci. 117:9451–9457. PubMed PMC

Huai KHY, Pei SJ. 2000. Wild plants in the diet of arhorchin mongol herdsmen in inner mongolia. Econ Bot. 54:528–536.

Huang CY, Chu YL, Sridhar K, Tsai PJ. 2019. Analysis and determination of phytosterols and triterpenes in different inbred lines of Djulis (Chenopodium formosanum Koidz.) hull: a potential source of novel bioactive ingredients. Food Chem. 297:124948. PubMed

Jarvis DE, et al. . 2017. The genome of chenopodium quinoa. Nature 542:307–312. PubMed

Jarvis DE, et al. . 2022. Chromosome-scale genome assembly of Gilia yorkii enables genetic mapping of floral traits in an interspecies cross. Genome Biol Evol. 14:evac017. PubMed PMC

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30:3059–3066. PubMed PMC

Kolano B, et al. . 2011. Chromosomal localization of two novel repetitive sequences isolated from the chenopodium quinoa willd. genome. Genome 54:710–717. PubMed

Kolano B, et al. . 2019. Parental origin and genome evolution of several eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa 392:163–185.

Krak K, et al. . 2016. Allopolyploid origin of chenopodium album s. str. (Chenopodiaceae): a molecular and cytogenetic insight. PLoS ONE. 11:e0161063. PubMed PMC

Laetsch DR, Blaxter ML. 2017. BlobTools: interrogation of genome assemblies. F1000research 6:1287.

Lee CW, Chen HJ, Xie GR, Shih CK. 2019. Djulis (Chenopodium formosanum) prevents colon carcinogenesis via regulating antioxidative and apoptotic pathways in rats. Nutrients 11:2168. PubMed PMC

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. PubMed PMC

Li PH, et al. . 2021. Functionality of djulis (Chenopodium formosanum) by-products and in vivo anti-diabetes effect in type 2 diabetes mellitus patients. Biology 10:160. PubMed PMC

Lyons E, Pedersen B, Kane J, Freeling M. 2008. The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol. 1:181–190.

Ma J, Bennetzen JL. 2004. Rapid recent growth and divergence of rice nuclear genomes. P Natl Acad Sci U S A. 101:12404–12410. PubMed PMC

Mandák B, et al. . 2016. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect Plant Ecol Evol Syst. 23:18–32.

Mandák B, et al. . 2018. Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Mol Phylogenet Evol. 129:189–201. PubMed

Mangelson H, et al. . 2019. The genome of Chenopodium pallidicaule: an emerging andean super grain. Appl Plant Sci. 7:e11300. PubMed PMC

Nurk S, et al. . 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30:1291–1305. PubMed PMC

Pandey S, Gupta RK. 2014. Screening of nutritional, phytochemical, antioxidant and antibacterial activity of Chenopodium album (Bathua). J Pharmacogn Phytochem. 3:1–9.

Partap T, Kapoor P. 1985. The himalayan grain chenopods. I. Distribution and ethnobotany. Agric Ecosyst Environ. 14:185–199.

Ranallo-Benavidez TR, Jaron KS, Schatz MC. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 11:1432. PubMed PMC

Repo-Carrasco R, Espinoza C, Jacobsen SE. 2003. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int. 19:179–189.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. PubMed

Smit AFA, Hubley R, Green P. 2013. RepeatMasker Open-4.0. http://www.repeatmasker.org.

Štorchová H, Drabešová J, Cháb D, Kolář J, Jellen EN. 2015. The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa willd. Genet Resour Crop Evol. 62:913–925.

Team RC. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Tillich M, et al. . 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45:W6–W11. PubMed PMC

Tsai PJ, Chen YS, Sheu CH, Chen CY. 2011. Effect of nanogrinding on the pigment and bioactivity of djulis (Chenopodium formosanum Koidz.). J Agr Food Chem. 59:1814–1820. PubMed

Tsai PJ, Sheu CH, Wu PH, Sun YF. 2010. Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J Agr Food Chem. 58:1020–1025. PubMed

Vega-Gálvez A, et al. . 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric. 90:2541–2547. PubMed

Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN. 2015. Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. Am J Bot. 102:533–543. PubMed

Wang Y, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40:e49–e49. PubMed PMC

Wilson HD, Heiser CB Jr. 1979. The origin and evolutionary relationships of “huauzontle” (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Am J Bot. 66:198–206.

Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20:257. PubMed PMC

Yadav SK, Sehgal S. 2002. In vitro and in vivo availability of iron from Bathua (Chenopodium album) and spinach (Spinacia oleracea) leaves. J Food Sci Technol. 39:42–46.

Yang BY, et al. . 2014. Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy 76:59–65.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium

. 2025 Mar ; 18 (1) : e70010.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace