Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions

. 2022 Jan 18 ; 12 (3) : . [epub] 20220118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35159655

Grantová podpora
VEGA 1/0747/20 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (Vedecká grantová agentúra MŠVVaŠ SR a SAV)
VEGA 1/0146/18 the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (Vedecká grantová agentúra MŠVVaŠ SR a SAV)
04-GASPU-2021 Grant Agency of the Slovak University of Agriculture in Nitra

Nanotechnology offers new opportunities for the development of novel materials and strategies that improve technology and industry. This applies especially to agriculture, and our previous field studies have indicated that zinc oxide nanoparticles provide promising nano-fertilizer dispersion in sustainable agriculture. However, little is known about the precise ZnO-NP effects on legumes. Herein, 1 mg·L-1 ZnO-NP spray was dispersed on lentil plants to establish the direct NP effects on lentil production, seed nutritional quality, and stress response under field conditions. Although ZnO-NP exposure positively affected yield, thousand-seed weight and the number of pods per plant, there was no statistically significant difference in nutrient and anti-nutrient content in treated and untreated plant seeds. In contrast, the lentil water stress level was affected, and the stress response resulted in statistically significant changes in stomatal conductance, crop water stress index, and plant temperature. Foliar application of low ZnO-NP concentrations therefore proved promising in increasing crop production under field conditions, and this confirms ZnO-NP use as a viable strategy for sustainable agriculture.

Zobrazit více v PubMed

Viadel B., Barberá R., Farré R. Uptake and retention of calcium, iron, and zinc from raw legumes and the effect of cooking on lentils in Caco-2 cells. Nutr. Res. 2006;26:591–596. doi: 10.1016/j.nutres.2006.09.016. DOI

Romano A., Gallo V., Ferranti P., Masi P. Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr. Opin. Food Sci. 2021;40:157–167. doi: 10.1016/j.cofs.2021.04.003. DOI

Ramírez-Ojeda A.M., Moreno-Rojas R., Cámara-Martos F. Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. J. Food Compos. Anal. 2018;73:17–28. doi: 10.1016/j.jfca.2018.07.007. DOI

Biju S., Fuentes S., Gupta D. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol. Biochem. 2017;119:250–264. doi: 10.1016/j.plaphy.2017.09.001. PubMed DOI

Naser S., Mohsen J. Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann. Univ. Mariae Curie-Skłodowska, C. Biol. 2015:39–55.

Summerfield R.J., Roberts E.H., Erskine W., Ellis R.H. Effects of Temperature and Photoperiod on Flowering in Lentils (Lens culinaris Medic.) Ann. Bot. 1985;56:659–671. doi: 10.1093/oxfordjournals.aob.a087055. DOI

Erbaş Köse Ö.D., Bozoğlu H., Mut Z. Quality Traits of Green Lentil (Lens culinaris Medik.) Cultivars and Lines. Yuz. Yil Univ. J. Agric. Sci. 2018;28:55–61.

Yadav S., McNeil D.L., Andrews M., Chen C., Brand J., Singh G., Shivakumar B., Gangaiah B. Soil nutrient management. In: Erskine W., Muehlbauer F.J., Sarker A., Sharma B., editors. The Lentil: Botany, Production and Uses. CAB International; Cambridge, MA, USA: 2009. pp. 194–212.

Pandey N., Pathak G.C., Sharma C.P. Zinc is critically required for pollen function and fertilisation in lentil. J. Trace Elem. Med. Biol. 2006;20:89–96. doi: 10.1016/j.jtemb.2005.09.006. PubMed DOI

Obata H., Kawamura S., Senoo K., Tanaka A. Changes in the level of protein and activity of Cu/Zn-superoxide dismutase in zinc deficient rice plant, Oryza sativa L. Soil Sci. Plant Nutr. 1999;45:891–896. doi: 10.1080/00380768.1999.10414338. DOI

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC

Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC

Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI

Salgueiro M.J., Zubillaga M., Lysionek A., Sarabia M.I., Caro R., De Paoli T., Hager A., Weill R., Boccio J. Zinc as an essential micronutrient: A review. Nutr. Res. 2000;20:737–755. doi: 10.1016/S0271-5317(00)00163-9. DOI

Alloway B.J. Zinc in Soils and Crop Nutrition. International Zinc Association and International Fertilizer Industry Association; Brussels, Belgium: 2008.

Kabata-Pendias A. Trace Elements in Soils and Plants. CRC press; Boca Raton, FL, USA: 2000.

Wang J., Moeen-ud-din M., Yang S. Dose-dependent responses of Arabidopsis thaliana to zinc are mediated by auxin homeostasis and transport. Environ. Exp. Bot. 2021;189:104554. doi: 10.1016/j.envexpbot.2021.104554. DOI

Torabian S., Zahedi M., Khoshgoftar A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 2016;39:172–180. doi: 10.1080/01904167.2015.1009107. DOI

Pérez Velasco E.A., Betancourt Galindo R., Valdez Aguilar L.A., González Fuentes J.A., Puente Urbina B.A., Lozano Morales S.A., Sánchez Valdés S. Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules. 2020;25:1282. doi: 10.3390/molecules25061282. PubMed DOI PMC

Sabir S., Arshad M., Chaudhari S.K. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014;2014:925494. doi: 10.1155/2014/925494. PubMed DOI PMC

Singh M.D., Kumar B.A. Bio efficacy of nano zinc sulphide (ZnS) on growth and yield of sunflower (Helianthus annuus L.) and nutrient status in the soil. Int. J. Agric. Sci. 2017;9:3795–3798.

Kołodziejczak-Radzimska A., Jesionowski T. Zinc oxide-from synthesis to application: A review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833. PubMed DOI PMC

Rehman S., Ullah R., Butt A.M., Gohar N.D. Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 2009;170:560–569. doi: 10.1016/j.jhazmat.2009.05.064. PubMed DOI

Park S.J., Das G.S., Schütt F., Adelung R., Mishra Y.K., Tripathi K.M., Kim T. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: Degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater. 2019;11:8. doi: 10.1038/s41427-019-0107-0. DOI

Mishra Y.K., Adelung R. ZnO tetrapod materials for functional applications. Mater. Today. 2018;21:631–651. doi: 10.1016/j.mattod.2017.11.003. DOI

Kim H.-H., Goins G.D., Wheeler R.M., Sager J.C. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 2004;94:691–697. doi: 10.1093/aob/mch192. PubMed DOI PMC

Zarco-Tejada P.J., González-Dugo V., Williams L.E., Suárez L., Berni J.A.J., Goldhamer D., Fereres E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013;138:38–50. doi: 10.1016/j.rse.2013.07.024. DOI

Jackson R.D., Idso S.B., Reginato R.J., Pinter Jr P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981;17:1133–1138. doi: 10.1029/WR017i004p01133. DOI

Thavarajah D., Thavarajah P., See C.-T., Vandenberg A. Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chem. 2010;122:254–259. doi: 10.1016/j.foodchem.2010.02.073. DOI

Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI

Xiang L., Zhao H.-M., Li Y.-W., Huang X.-P., Wu X.-L., Zhai T., Yuan Y., Cai Q.-Y., Mo C.-H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI

Paranavitana L., Oh W.Y., Yeo J., Shahidi F. Determination of soluble and insoluble-bound phenolic compounds in dehulled, whole, and hulls of green and black lentils using electrospray ionization (ESI)-MS/MS and their inhibition in DNA strand scission. Food Chem. 2021;361:130083. doi: 10.1016/j.foodchem.2021.130083. PubMed DOI

Chelladurai V., Erkinbaev C. Lentils. In: Manickavasagan A., Thirunathan P., editors. Pulses: Processing and Product Development. Springer International Publishing; Cham, Switzerland: 2020. pp. 129–143.

Lake L., Sadras V.O. Lentil yield and crop growth rate are coupled under stress but uncoupled under favourable conditions. Eur. J. Agron. 2021;126:126266. doi: 10.1016/j.eja.2021.126266. DOI

Nleya T., Vandenberg A., Walley F., Deneke D. Lentil: Agronomy. In: Colin W., editor. Encyclopedia of Grain Science. Elsevier; Oxford, England: 2016. pp. 150–157.

Lindsay W.L., Norvell W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x. DOI

Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., et al. The Uniform Methods of Soil Analysis. VÚPOP Bratislava; Ružinov, Slovakia: 2011. p. 136.

Meier U. Growth Stages of Mono-And Dicotyledonous Plants. Blackwell Wissenschafts-Verlag; Kurfürstendamm, Germany: 1997.

Abraham R. Lentil (Lens culinaris Medikus) Current status and future prospect of production in Ethiopia. Adv. Plants Agric. Res. 2015;2:00040.

Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978–989. doi: 10.1071/FP09123. PubMed DOI

Losak T., Hlusek J., Martinec J., Jandak J., Szostkova M., Filipcik R., Manasek J., Prokes K., Peterka J., Varga L., et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.) Acta Agric. Scand. Sect. B—Soil Plant Sci. 2011;61:543–550.

Kolenčík M., Nemček L., Šebesta M., Urík M., Ernst D., Kratošová G., Konvičková Z. Effect of TiO2 as plant-growth stimulating nanomaterial on crop production. In: Singh V.P., Singh S., Prasad S.M., Chauhan D.K., Tripathi D.K., editors. Plant Responses to Nanomaterials, Recent Interventions, and Physiological and Biochemical Responses. 1st ed. Springer International Publishing; Cham, Switzerland: 2021. pp. 129–144.

Li C., Wang P., van der Ent A., Cheng M., Jiang H., Read T.L., Lombi E., Tang C., de Jonge M.D., Menzies N.W., et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Ann. Bot. 2019;123:57–68. doi: 10.1093/aob/mcy135. PubMed DOI PMC

Hu P., An J., Faulkner M.M., Wu H., Li Z., Tian X., Giraldo J.P. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano. 2020;14:7970–7986. doi: 10.1021/acsnano.9b09178. PubMed DOI

Bhattacharjee S. DLS and zeta potential–What they are and what they are not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI

Baker S., Volova T., Prudnikova S.V., Satish S., Prasad M.N. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ. Toxicol. Pharmacol. 2017;53:10–17. doi: 10.1016/j.etap.2017.04.012. PubMed DOI

Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy K.R., Sreeprasad T.S., Sajanlal P.R., Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012;35:905–927. doi: 10.1080/01904167.2012.663443. DOI

Prasad R., Bhattacharyya A., Nguyen Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017;8:1014. doi: 10.3389/fmicb.2017.01014. PubMed DOI PMC

Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI

Gao F., Hong F., Liu C., Zheng L., Su M., Wu X., Yang F., Wu C., Yang P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Elem. Res. 2006;111:239–253. doi: 10.1385/BTER:111:1:239. PubMed DOI

Kamal R., Mogazy A.M. Effect of doping on TiO2 nanoparticles characteristics: Studying of fertilizing effect on cowpea plant growth and yield. J. Soil Sci. Plant Nutr. 2021:1–13.

Singh J., Kumar S., Alok A., Upadhyay S.K., Rawat M., Tsang D.C.W., Bolan N., Kim K.-H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 2019;214:1061–1070. doi: 10.1016/j.jclepro.2019.01.018. DOI

Keerthana P., Vijayakumar S., Vidhya E., Punitha V.N., Nilavukkarasi M., Praseetha P.K. Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti -infection and growth promotion in plants. Ind. Crops Prod. 2021;170:113762.

Bishaw Z., Makkawi M., Niane A.A. Seed quality and alternative seed delivery systems. In: Erskine W., Muehlbauer F.J., Sarker A., Sharma B., editors. The Lentil: Botany, Production and Uses. CAB International; Cambridge, MA, USA: 2009. pp. 350–367.

Peralta-Videa J.R., Hernandez-Viezcas J.A., Zhao L., Diaz B.C., Ge Y., Priester J.H., Holden P.A., Gardea-Torresdey J.L. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol. Biochem. 2014;80:128–135. doi: 10.1016/j.plaphy.2014.03.028. PubMed DOI

Bloem E., Haneklaus S., Haensch R., Schnug E. EDTA application on agricultural soils affects microelement uptake of plants. Sci. Total Environ. 2017;577:166–173. doi: 10.1016/j.scitotenv.2016.10.153. PubMed DOI

Abd El-Aziz A.R., Al-Othman M.R. Gold nanoparticles biosynthesis using zingiber officinale and their impact on the growth and chemical composition of lentil (Lens culinaris Medic.) Pak. J. Bot. 2019;51:443–450. doi: 10.30848/PJB2019-2(21). DOI

Janmohammadi M., Sabaghnia N., Ahadnezhad A. Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris Medik.) genotypes with various origins. Poljopr. I Sumar. 2015;61:19. doi: 10.17707/AgricultForest.61.3.02. DOI

Feizi H., Agheli N., Sahabi H. Titanium dioxide nanoparticles alleviate cadmium toxicity in lentil (Lens culinaris Medic) seeds. Acta Agric. Slov. 2020;116:59–68. doi: 10.14720/aas.2020.116.1.1116. DOI

Siddiqui Z., Khan A., Khan M., Abd-Allah E. Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.) Acta Phytopathol. Entomol. Hung. 2018;53:195–211. doi: 10.1556/038.53.2018.012. DOI

Hojjat S.S., Hojjat H. Effects of silver nanoparticle exposure on germination of Lentil (Lens culinaris Medik.) Int. J. Farm. Allied Sci. 2016;5:248–252.

Grusak M.A. Nutritional and health-beneficial quality. In: Erskine W., Muehlbauer F.J., Sarker A., Sharma B., editors. The Lentil: Botany, Production and Uses. CAB International; Cambridge, MA, USA: 2009. pp. 368–390.

Faizan M., Bhat J.A., Chen C., Alyemeni M.N., Wijaya L., Ahmad P., Yu F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 2021;161:122–130. doi: 10.1016/j.plaphy.2021.02.002. PubMed DOI

Erdal I., Kaya M., Küçükyumuk Z. Effects of Zinc and Nitrogen fertilizations on grain yield and some parameters effecting Zinc bioavailability in lentil seeds. Legume Res. 2014;37:55–61. doi: 10.5958/j.0976-0571.37.1.008. DOI

Sebastiá V., Barberá R., Farré R., Lagarda M.J. Effects of legume processing on calcium, iron and zinc contents and dialysabilities. J. Sci. Food Agric. 2001;81:1180–1185. doi: 10.1002/jsfa.927. DOI

Mitchell M., Pritchard J., Okada S., Larroque O., Yulia D., Pettolino F., Szydlowski N., Singh S., Liu Q., Ral J.P. Oil Accumulation in Transgenic Potato Tubers Alters Starch Quality and Nutritional Profile. Front. Plant Sci. 2017;8:554. doi: 10.3389/fpls.2017.00554. PubMed DOI PMC

Raigond P., Raigond B., Kaundal B., Singh B., Joshi A., Dutt S. Effect of zinc nanoparticles on antioxidative system of potato plants. J. Environ. Biol. 2017;38:435–439. doi: 10.22438/jeb/38/3/MS-209. DOI

Franks P., Brodribb T.J. Vascular Transport in Plants. Elsevier; Amsterdam, The Netherlands: 2005. Stomatal control and water transport in the xylem; pp. 69–89.

Kirkham M. Stress-degree-day concept and crop water stress index. In: Kirkham M., editor. Principles of Soil and Plant Water Relations. Academic Press; Cambridge, MA, USA: 2014. pp. 437–453.

Adrees M., Khan Z.S., Hafeez M., Rizwan M., Hussain K., Asrar M., Alyemeni M.N., Wijaya L., Ali S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicol. Environ. Saf. 2021;208:111627. doi: 10.1016/j.ecoenv.2020.111627. PubMed DOI

Alabdallah N.M., Alzahrani H.S. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J. Biol. Sci. 2020;27:3132–3137. doi: 10.1016/j.sjbs.2020.08.005. PubMed DOI PMC

Salama D.M., Osman S.A., Abd El-Aziz M.E., Abd Elwahed M.S.A., Shaaban E.A. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris) Biocatal. Agric. Biotechnol. 2019;18:101083. doi: 10.1016/j.bcab.2019.101083. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace