Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0655/23, VEGA 1/0331/23 and VEGA 1/0359/22
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
PubMed
39065463
PubMed Central
PMC11280334
DOI
10.3390/plants13141936
PII: plants13141936
Knihovny.cz E-zdroje
- Klíčová slova
- biosilica, gold, grain quality, maize, nanofertilizers, nanoparticles, spray application, titanium dioxide, yield, zinc oxide,
- Publikační typ
- časopisecké články MeSH
Our previous studies have shown physiological and yield intensification of selected crops with the application of nanoparticles (NPs). However, the impact on the quantitative, qualitative, and yield parameters of maize (Zea mays L.) in field conditions remains highly debated. This study aimed to evaluate the effects of zinc oxide (ZnO-NPs), gold NPs anchored to meso-biosilica (Au-NP-bioSi), and titanium dioxide (TiO2-NPs) as biological stimulants under field conditions during the vegetation season of 2021 in the Central European region. The study assessed the effects on the number of plants, yield, yield components, and nutritional quality, including mineral nutrients, starch, and crude protein levels. The potential translocation of these chemically-physically stable NPs, which could pose a hazard, was also investigated. The results indicate that Au-NP-bioSi and ZnO-NPs-treatments were the most beneficial for yield and yield components at a statistically significant level. Mineral nutrient outcomes were varied, with the NP-free variant performing the best for phosphorus-levels, while Au-NP-bioSi and ZnO-NPs were optimal for crude protein. Starch content was comparable across the TiO2-NPs, Au-NP-bioSi, and control variants. Importantly, we observed no hazardous translocation of NPs or negative impacts on maize grain quality. This supports the hypothesis that NPs can serve as an effective tool for precise and sustainable agriculture.
Zobrazit více v PubMed
Das R., Kumar P., Agrawal S., Singh K., Singh N., Singh S., Vishwakarma J., Rajput V.D., Singh A.K., Minkina T.M., et al. Nanoparticles for crop improvement and management. In: Vishnu D.R., Abhishek S., Karen G., Tatiana M.M., Abdel Rahman M.A.-T., editors. Sustainable Agriculture. De Gruyter; Berlin, Germany: 2024. pp. 69–84.
Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016;11:400. doi: 10.1186/s11671-016-1607-2. PubMed DOI PMC
Šebesta M., Ďurišová Ľ., Ernst D., Kšiňan S., Illa R., Sunil B.R., Ingle A.P., Qian Y., Urík M., Kolenčík M. Foliar application of metallic nanoparticles on crops under field conditions. In: Chen J.-T., editor. Plant and Nanoparticles. Springer Nature; Singapore: 2022. pp. 171–215.
Yadav A., Yadav K., Abd-Elsalam K.A. Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2:296–336. doi: 10.3390/agrochemicals2020019. DOI
Kolenčík M., Šebesta M., Ďurišová Ľ., Ďúranová H., Ernst D., Kšiňan S., Kósa P., Illa R., Baby M.K., Zapletalová A., et al. Complex Study of Foliar Application of Inorganic Nanofertilizers in Field Conditions: Impact on Crop Production and Environmental–Ecological Assessment. In: Abd-Elsalam K.A., Alghuthaymi M.A., editors. Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends. Springer Nature; Cham, Switzerland: 2024. pp. 507–560.
Ernst D., Kolenčík M., Šebesta M., Ďurišová Ľ., Ďúranová H., Kšiňan S., Illa R., Safarik I., Černý I., Kratošová G., et al. Agronomic Investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments. Plants. 2023;12:1789. doi: 10.3390/plants12091789. PubMed DOI PMC
Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC
Gao F., Hong F., Liu C., Zheng L., Su M., Wu X., Yang F., Wu C., Yang P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Elem. Res. 2006;111:239–253. doi: 10.1385/BTER:111:1:239. PubMed DOI
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Juriga M., Illa R., et al. Effect of foliar application of ZnO nanoparticles to lentil production, physiology, and nutrients seed quality at field conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC
Sun Y., Zhu G., Zhao W., Jiang Y., Wang Q., Wang Q., Rui Y., Zhang P., Gao L. Engineered nanomaterials for improving the nutritional quality of agricultural products: A Review. Nanomaterials. 2022;12:4219. doi: 10.3390/nano12234219. PubMed DOI PMC
Obadi M., Qi Y.J., Xu B. High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr. Polym. 2023;299:120185. doi: 10.1016/j.carbpol.2022.120185. PubMed DOI
Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC
Suriyaprabha R., Karunakaran G., Kavitha K., Yuvakkumar R., Rajendran V., Kannan N. Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol. 2014;8:133–137. doi: 10.1049/iet-nbt.2013.0004. PubMed DOI
Suriyaprabha R., Karunakaran G., Yuvakkumar R., Prabu P., Rajendran V., Kannan N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res. 2012;14:1294. doi: 10.1007/s11051-012-1294-6. DOI
Liu J.Y., Sayes C.M. A toxicological profile of silica nanoparticles. Toxicol. Res. 2022;11:565–582. doi: 10.1093/toxres/tfac038. PubMed DOI PMC
Jones K., Morton J., Smith I., Jurkschat K., Harding A.-H., Evans G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015;233:95–101. doi: 10.1016/j.toxlet.2014.12.005. PubMed DOI
Kołodziejczak-Radzimska A., Jesionowski T. Zinc oxide-from synthesis to application: A review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833. PubMed DOI PMC
Gupta H.S., Hossain F., Nepolean T., Vignesh M., Mallikarjuna M.G. Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In: Rakshit A., Singh H.B., Sen A., editors. Nutrient Use Efficiency: From Basics to Advances. Springer; New Delhi, India: 2015. pp. 255–282.
Badu-Apraku B., Fakorede M.A.B. Morphology and physiology of maize. In: Badu-Apraku B., Fakorede M.A.B., editors. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. Springer International Publishing; Cham, Switzerland: 2017. pp. 33–53.
Maitra S., Singh V. Invited review on ‘maize in the 21st century’ Emerging trends of maize biorefineries in the 21st century: Scientific and technological advancements in biofuel and bio-sustainable market. J. Cereal Sci. 2021;101:103272. doi: 10.1016/j.jcs.2021.103272. DOI
Penafiel D., Lachat C., Espinel R., Van Damme P., Kolsteren P. A systematic review on the contributions of edible plant and animal biodiversity to human diets. EcoHealth. 2011;8:381–399. doi: 10.1007/s10393-011-0700-3. PubMed DOI
Song H.Y., El Sheikha A.F., Hu D.M. The positive impacts of microbial phytase on its nutritional applications. Trends Food Sci. Technol. 2019;86:553–562. doi: 10.1016/j.tifs.2018.12.001. DOI
Suarez-Martinez S.E., Ferriz-Martinez R.A., Campos-Vega R., Elton-Puente J.E., Carbot K.D., Garcia-Gasca T. Bean seeds: Leading nutraceutical source for human health. Cyta-J. Food. 2016;14:131–137. doi: 10.1080/19476337.2015.1063548. DOI
Uusi-Rasi K., Karkkainen M.U.M., Lamberg-Allardt C.J.E. Calcium intake in health maintenance—A systematic review. Food Nutr. Res. 2013;57:21082. doi: 10.3402/fnr.v57i0.21082. PubMed DOI PMC
Suganya A., Saravanan A., Manivannan N. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. 2020;51:2001–2021.
Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI
Akhtar S., Osthoff G., Mashingaidze K., Labuschagne M. Iron and zinc in maize in the developing world: Deficiency, availability, and breeding. Crop Sci. 2018;58:2200–2213. doi: 10.2135/cropsci2018.02.0133. DOI
National Institute of Health—Zinc: Fact Sheet for Consumers. [(accessed on 4 May 2022)]; Available online: https://ods.od.nih.gov/factsheets/Zinc-Consumer/
Yu B.-G., Chen X.-X., Zhou C.-X., Ding T.-B., Wang Z.-H., Zou C.-Q. Nutritional composition of maize grain associated with phosphorus and zinc fertilization. J. Food Compos. Anal. 2022;114:104775. doi: 10.1016/j.jfca.2022.104775. DOI
Mason S.C., D’Croz-Mason N.E. Agronomic practices influence maize grain quality. J. Crop Prod. 2002;5:75–91. doi: 10.1300/J144v05n01_04. DOI
Shah M., Badwaik V., Kherde Y., Waghwani H., Modi T., Aguilar Z.P., Rodgers H., Hamilton W., Marutharaj T., Webb C., et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front. Biosci. 2014;19:1320–1344. doi: 10.2741/4284. PubMed DOI
Sidambe A.T. Biocompatibility of advanced manufactured titanium implants—A review. Materials. 2014;7:8168–8188. doi: 10.3390/ma7128168. PubMed DOI PMC
Raliya R., Franke C., Chavalmane S., Nair R., Reed N., Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 2016;7:1288. doi: 10.3389/fpls.2016.01288. PubMed DOI PMC
Kolenčík M., Nemček L., Šebesta M., Urík M., Ernst D., Kratošová G., Konvičková Z. Effect of TiO2 as plant-growth stimulating nanomaterial on crop production. In: Tripathi D.K., Prasad S.M., Chauhan D.K., editors. Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer International Publishing; Cham, Switzerland: 2021. pp. 129–144.
Holišová V., Urban M., Kolenčík M., Nemcová Y., Schrofel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI
Saatbau—Magazín pre Lepšiu Úrodu: Osivá jar 2024. [(accessed on 11 September 2023)]. Available online: https://www.saatbau.com/sk/wp-content/uploads/sites/9/2023/11/saatbau-osiva-2024-jar-26-web.pdf.
Tobiašová E., Šimanský V. Kvantifikácia Pôdnych Vlastností a ich Vzájomných vzťahov Ovplyvnených Antropickou Činnosťou. 1st ed. Slovenská Poľnohospodárska Univerzita; Nitra, Slovakia: 2009.
Harčár J., Priechodská Z., Karolus K., Karolusová E., Remšík K., Šucha P. Vysvetlivky ku Geologickej Mape Severovýchodnej Časti Podunajskej Nižiny. 1st ed. Geologický Ústav Dionýza Štúra; Bratislava, Slovakia: 1988.
Šimanský V., Kováčik P. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem. 2015;20:1033–1040. doi: 10.5601/jelem.2015.20.1.857. DOI
Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., et al. The Uniform Methods of Soil Analysis. VÚPOP; Bratislava, Slovakia: 2011. p. 136.
Kononova M., Bělčikova N. Uskorennyje metody opredelenija sostava gumusa mineralnych počv. Počvovedenie. 1961;10:75–87.
Duflo E., Banerjee A. Handbook of Field Experiments. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017.
MPSR Vyhláška MP SR č. 338/2005 Z.z. [(accessed on 18 September 2009)]. Available online: https://www.mpsr.sk/vyhlaska-mp-sr-c-338-2005-z-z/29-23-29-1845/
Vicianová M., Ducsay L., Hric P. Effect of increasing doses of nitrogen on nutrient uptake by oilseed rape (Brassica napus L.) in years with different weather conditions. Bulg. J. Agric. Sci. 2024;30:250–254.
Losak T., Hlusek J., Martinec J., Jandak J., Szostkova M., Filipcik R., Manasek J., Prokes K., Peterka J., Varga L., et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.) Acta Agric. Scand. B Soil Plant. Sci. 2011;61:543–550.
Cade-Menun B.J., Elkin K.R., Liu C.W., Bryant R.B., Kleinman P.J.A., Moore P.A. Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochem. Trans. 2018;19:7. doi: 10.1186/s12932-018-0052-9. PubMed DOI PMC
TIBCO Software Inc. (Data Analysis Software System), Version 14.0. [(accessed on 6 June 2024)]. Available online: https://www.tibco.com/
White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI
Liu X., Wang F., Shi Z., Tong R., Shi X. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J. Nanopart. Res. 2015;17:175. doi: 10.1007/s11051-015-2989-2. DOI
White P.J., Broadley M.R., Gregory P.J. Managing the nutrition of plants and people. Appl. Environ. Soil Sci. 2012;2012:104826. doi: 10.1155/2012/104826. DOI
Ponge J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013;57:1048–1060. doi: 10.1016/j.soilbio.2012.07.019. DOI
Ciampitti I.A., Camberato J.J., Murrell S.T., Vyn T.J. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron. J. 2013;105:783–795. doi: 10.2134/agronj2012.0467. DOI
White P.J. Ion uptake mechanisms of individual cells and roots: Short-distance transport. In: Marschner P., editor. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; San Diego, CA, USA: 2012. pp. 7–47.
Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Møller I.S., White P. Functions of macronutrients. In: Marschner P., editor. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; San Diego, CA, USA: 2012. pp. 135–189.
Falade J.A. Interrelationships between potassium, calcium, and magnesium nutrition of Zea mays L. Ann. Bot. 1973;37:345–353. doi: 10.1093/oxfordjournals.aob.a084697. DOI
Kirkby E.A. Introduction, definition, and classification of nutrients. In: Rengel Z., Cakmak I., White P.J., editors. Marschner’s Mineral Nutrition of Plants. 4th ed. Academic Press; San Diego, CA, USA: 2023. pp. 3–9.
Reitemeier R.F. Soil Potassium. In: Norman A.G., editor. Advances in Agronomy. Academic Press; San Diego, CA, USA: 1951. pp. 113–164.
Zhu J., Li M., Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018;612:522–537. doi: 10.1016/j.scitotenv.2017.08.095. PubMed DOI
Sutar R.K., Pujar A.M., Kumar B.A., Hebsur N. Sulphur nutrition in maize—A critical review. Int. J. Pure. App. Biosci. 2017;5:1582–1596. doi: 10.18782/2320-7051.6092. DOI
Fixen P.E., Bruulsema T.W., Jensen T.L., Mikkelsen R., Murrell T.S., Phillips S.B., Rund Q., Stewart W.M. The fertility of North American soils, 2010. Better Crops Plant Food. 2010;94:6–8.
Warnock R.E. Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency. Soil Sci. Soc. Am. J. 1970;34:765–769. doi: 10.2136/sssaj1970.03615995003400050028x. DOI
Srivastav A., Ganjewala D., Singhal R.K., Rajput V.D., Minkina T., Voloshina M., Srivastava S., Shrivastava M. Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants. 2021;10:2556. doi: 10.3390/plants10122556. PubMed DOI PMC
Umar W., Hameed M.K., Aziz T., Maqsood M.A., Bilal H.M., Rasheed N. Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch. Agron. Soil Sci. 2021;67:1164–1176. doi: 10.1080/03650340.2020.1782893. DOI
Ernst D., Kolenčík M., Šebesta M., Ďurišová Ľ., Kšiňan S., Tomovičová L., Kotlárová N., Kalúzová M., Černý I., Kratošová G., et al. Significance of phosphate nano-fertilizers foliar application: A brief real-field study of quantitative, physiological parameters, and agro-ecological diversity in sunflower. Agronomy. 2023;13:2606. doi: 10.3390/agronomy13102606. DOI
Kraemer S.M., Crowley D.E., Kretzschmar R. Advances in Agronomy. Academic Press; San Diego, CA, USA: 2006. Geochemical Aspects of Phytosiderophore-Promoted Iron Acquisition by Plants; pp. 1–46.
Ehsanullah, Tariq A., Randhawa M.A., Anjum S.A., Nadeem M.A., Naeem M. Exploring the role of zinc in maize (Zea mays L.) through soil and foliar application. Univers. J. Agric. Res. 2015;3:69–75. doi: 10.13189/ujar.2015.030301. DOI
Rangaraj S., Gopalu K., Rathinam Y., Periasamy P., Venkatachalam R., Narayanasamy K. Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnol. Appl. Biochem. 2014;61:668–675. doi: 10.1002/bab.1191. PubMed DOI
Suriyaprabha R., Karunakaran G., Yuvakkumar R., Rajendran V., Kannan N. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Syn. React. Inorg. Metalorg. Nanometal. Chem. 2014;44:1128–1131. doi: 10.1080/15533174.2013.799197. DOI
Dumon J.C., Ernst W.H.O. Titanium in plants. J. Plant Physiol. 1988;133:203–209. doi: 10.1016/S0176-1617(88)80138-X. DOI
Hussain S., Shafiq I., Chattha M.S., Mumtaz M., Brestic M., Rastogi A., Chen G., Allakhverdiev S.I., Liu W., Yang W. Effect of Ti treatments on growth, photosynthesis, phosphorus uptake and yield of soybean (Glycine max L.) in maize-soybean relay strip intercropping. Environ. Exp. Bot. 2021;187:104476. doi: 10.1016/j.envexpbot.2021.104476. DOI
Ji Y., Seetharaman K., White P.J. Optimizing a small-scale corn-starch extraction method for use in the laboratory. Cereal Chem. 2004;81:55–58. doi: 10.1094/CCHEM.2004.81.1.55. DOI
Huang S., Sun G., Jin J., Zuo Y.-B., He P. Effect of nitrogen, phosphorus and potassium application on grain yield and qualities of high-oil and high-starch corn. Plant Nutr. Fert. Sci. 2004;10:225.
Chaudhary D.P., Kumar S., Yadav O.P. Nutritive value of maize: Improvements, applications and constraints. In: Chaudhary D.P., Kumar S., Langyan S., editors. Maize: Nutrition Dynamics and Novel Uses. Springer; New Delhi, India: 2014. pp. 3–17.
Zhang X., Guo D., Blennow A., Zörb C. Mineral nutrients and crop starch quality. Trends Food Sci. Technol. 2021;114:148–157. doi: 10.1016/j.tifs.2021.05.016. DOI
National Institute of Health—Iron: Fact Sheet for Health Professionals. [(accessed on 15 June 2023)]; Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/
Imran M., Rehim A., Sarwar N., Hussain S. Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. J. Plant Nutr. Soil Sci. 2016;179:60–66. doi: 10.1002/jpln.201500441. DOI
Li Y., Schluesener H.J., Xu S. Gold nanoparticle-based biosensors. Gold Bull. 2010;43:29–41. doi: 10.1007/BF03214964. DOI
Enea M., Pereira E., Silva D.D., Costa J., Soares M.E., de Lourdes Bastos M., Carmo H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. Nanotechnology. 2020;31:195102. doi: 10.1088/1361-6528/ab6dfb. PubMed DOI
Committee on Toxicity: Safe Upper Levels for Vitamins and Minerals, Expert Group on Vitamins and Minerals. [(accessed on 1 May 2003)]; Available online: https://cot.food.gov.uk/sites/default/files/vitmin2003.pdf.
Shahhoseini R., Daneshvar H. Phytochemical and physiological reactions of feverfew (Tanacetum parthenium (L.) Schultz Bip) to TiO2 nanoparticles. Plant Physiol. Biochem. 2023;194:674–684. doi: 10.1016/j.plaphy.2022.12.011. PubMed DOI