Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study

. 2024 Jul 14 ; 13 (14) : . [epub] 20240714

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39065463

Grantová podpora
VEGA 1/0655/23, VEGA 1/0331/23 and VEGA 1/0359/22 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences

Our previous studies have shown physiological and yield intensification of selected crops with the application of nanoparticles (NPs). However, the impact on the quantitative, qualitative, and yield parameters of maize (Zea mays L.) in field conditions remains highly debated. This study aimed to evaluate the effects of zinc oxide (ZnO-NPs), gold NPs anchored to meso-biosilica (Au-NP-bioSi), and titanium dioxide (TiO2-NPs) as biological stimulants under field conditions during the vegetation season of 2021 in the Central European region. The study assessed the effects on the number of plants, yield, yield components, and nutritional quality, including mineral nutrients, starch, and crude protein levels. The potential translocation of these chemically-physically stable NPs, which could pose a hazard, was also investigated. The results indicate that Au-NP-bioSi and ZnO-NPs-treatments were the most beneficial for yield and yield components at a statistically significant level. Mineral nutrient outcomes were varied, with the NP-free variant performing the best for phosphorus-levels, while Au-NP-bioSi and ZnO-NPs were optimal for crude protein. Starch content was comparable across the TiO2-NPs, Au-NP-bioSi, and control variants. Importantly, we observed no hazardous translocation of NPs or negative impacts on maize grain quality. This supports the hypothesis that NPs can serve as an effective tool for precise and sustainable agriculture.

Zobrazit více v PubMed

Das R., Kumar P., Agrawal S., Singh K., Singh N., Singh S., Vishwakarma J., Rajput V.D., Singh A.K., Minkina T.M., et al. Nanoparticles for crop improvement and management. In: Vishnu D.R., Abhishek S., Karen G., Tatiana M.M., Abdel Rahman M.A.-T., editors. Sustainable Agriculture. De Gruyter; Berlin, Germany: 2024. pp. 69–84.

Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI

Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016;11:400. doi: 10.1186/s11671-016-1607-2. PubMed DOI PMC

Šebesta M., Ďurišová Ľ., Ernst D., Kšiňan S., Illa R., Sunil B.R., Ingle A.P., Qian Y., Urík M., Kolenčík M. Foliar application of metallic nanoparticles on crops under field conditions. In: Chen J.-T., editor. Plant and Nanoparticles. Springer Nature; Singapore: 2022. pp. 171–215.

Yadav A., Yadav K., Abd-Elsalam K.A. Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2:296–336. doi: 10.3390/agrochemicals2020019. DOI

Kolenčík M., Šebesta M., Ďurišová Ľ., Ďúranová H., Ernst D., Kšiňan S., Kósa P., Illa R., Baby M.K., Zapletalová A., et al. Complex Study of Foliar Application of Inorganic Nanofertilizers in Field Conditions: Impact on Crop Production and Environmental–Ecological Assessment. In: Abd-Elsalam K.A., Alghuthaymi M.A., editors. Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends. Springer Nature; Cham, Switzerland: 2024. pp. 507–560.

Ernst D., Kolenčík M., Šebesta M., Ďurišová Ľ., Ďúranová H., Kšiňan S., Illa R., Safarik I., Černý I., Kratošová G., et al. Agronomic Investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments. Plants. 2023;12:1789. doi: 10.3390/plants12091789. PubMed DOI PMC

Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC

Gao F., Hong F., Liu C., Zheng L., Su M., Wu X., Yang F., Wu C., Yang P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Elem. Res. 2006;111:239–253. doi: 10.1385/BTER:111:1:239. PubMed DOI

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Juriga M., Illa R., et al. Effect of foliar application of ZnO nanoparticles to lentil production, physiology, and nutrients seed quality at field conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC

Sun Y., Zhu G., Zhao W., Jiang Y., Wang Q., Wang Q., Rui Y., Zhang P., Gao L. Engineered nanomaterials for improving the nutritional quality of agricultural products: A Review. Nanomaterials. 2022;12:4219. doi: 10.3390/nano12234219. PubMed DOI PMC

Obadi M., Qi Y.J., Xu B. High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr. Polym. 2023;299:120185. doi: 10.1016/j.carbpol.2022.120185. PubMed DOI

Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC

Suriyaprabha R., Karunakaran G., Kavitha K., Yuvakkumar R., Rajendran V., Kannan N. Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol. 2014;8:133–137. doi: 10.1049/iet-nbt.2013.0004. PubMed DOI

Suriyaprabha R., Karunakaran G., Yuvakkumar R., Prabu P., Rajendran V., Kannan N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res. 2012;14:1294. doi: 10.1007/s11051-012-1294-6. DOI

Liu J.Y., Sayes C.M. A toxicological profile of silica nanoparticles. Toxicol. Res. 2022;11:565–582. doi: 10.1093/toxres/tfac038. PubMed DOI PMC

Jones K., Morton J., Smith I., Jurkschat K., Harding A.-H., Evans G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015;233:95–101. doi: 10.1016/j.toxlet.2014.12.005. PubMed DOI

Kołodziejczak-Radzimska A., Jesionowski T. Zinc oxide-from synthesis to application: A review. Materials. 2014;7:2833–2881. doi: 10.3390/ma7042833. PubMed DOI PMC

Gupta H.S., Hossain F., Nepolean T., Vignesh M., Mallikarjuna M.G. Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize. In: Rakshit A., Singh H.B., Sen A., editors. Nutrient Use Efficiency: From Basics to Advances. Springer; New Delhi, India: 2015. pp. 255–282.

Badu-Apraku B., Fakorede M.A.B. Morphology and physiology of maize. In: Badu-Apraku B., Fakorede M.A.B., editors. Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. Springer International Publishing; Cham, Switzerland: 2017. pp. 33–53.

Maitra S., Singh V. Invited review on ‘maize in the 21st century’ Emerging trends of maize biorefineries in the 21st century: Scientific and technological advancements in biofuel and bio-sustainable market. J. Cereal Sci. 2021;101:103272. doi: 10.1016/j.jcs.2021.103272. DOI

Penafiel D., Lachat C., Espinel R., Van Damme P., Kolsteren P. A systematic review on the contributions of edible plant and animal biodiversity to human diets. EcoHealth. 2011;8:381–399. doi: 10.1007/s10393-011-0700-3. PubMed DOI

Song H.Y., El Sheikha A.F., Hu D.M. The positive impacts of microbial phytase on its nutritional applications. Trends Food Sci. Technol. 2019;86:553–562. doi: 10.1016/j.tifs.2018.12.001. DOI

Suarez-Martinez S.E., Ferriz-Martinez R.A., Campos-Vega R., Elton-Puente J.E., Carbot K.D., Garcia-Gasca T. Bean seeds: Leading nutraceutical source for human health. Cyta-J. Food. 2016;14:131–137. doi: 10.1080/19476337.2015.1063548. DOI

Uusi-Rasi K., Karkkainen M.U.M., Lamberg-Allardt C.J.E. Calcium intake in health maintenance—A systematic review. Food Nutr. Res. 2013;57:21082. doi: 10.3402/fnr.v57i0.21082. PubMed DOI PMC

Suganya A., Saravanan A., Manivannan N. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. 2020;51:2001–2021.

Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI

Akhtar S., Osthoff G., Mashingaidze K., Labuschagne M. Iron and zinc in maize in the developing world: Deficiency, availability, and breeding. Crop Sci. 2018;58:2200–2213. doi: 10.2135/cropsci2018.02.0133. DOI

National Institute of Health—Zinc: Fact Sheet for Consumers. [(accessed on 4 May 2022)]; Available online: https://ods.od.nih.gov/factsheets/Zinc-Consumer/

Yu B.-G., Chen X.-X., Zhou C.-X., Ding T.-B., Wang Z.-H., Zou C.-Q. Nutritional composition of maize grain associated with phosphorus and zinc fertilization. J. Food Compos. Anal. 2022;114:104775. doi: 10.1016/j.jfca.2022.104775. DOI

Mason S.C., D’Croz-Mason N.E. Agronomic practices influence maize grain quality. J. Crop Prod. 2002;5:75–91. doi: 10.1300/J144v05n01_04. DOI

Shah M., Badwaik V., Kherde Y., Waghwani H., Modi T., Aguilar Z.P., Rodgers H., Hamilton W., Marutharaj T., Webb C., et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front. Biosci. 2014;19:1320–1344. doi: 10.2741/4284. PubMed DOI

Sidambe A.T. Biocompatibility of advanced manufactured titanium implants—A review. Materials. 2014;7:8168–8188. doi: 10.3390/ma7128168. PubMed DOI PMC

Raliya R., Franke C., Chavalmane S., Nair R., Reed N., Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 2016;7:1288. doi: 10.3389/fpls.2016.01288. PubMed DOI PMC

Kolenčík M., Nemček L., Šebesta M., Urík M., Ernst D., Kratošová G., Konvičková Z. Effect of TiO2 as plant-growth stimulating nanomaterial on crop production. In: Tripathi D.K., Prasad S.M., Chauhan D.K., editors. Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer International Publishing; Cham, Switzerland: 2021. pp. 129–144.

Holišová V., Urban M., Kolenčík M., Nemcová Y., Schrofel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI

Saatbau—Magazín pre Lepšiu Úrodu: Osivá jar 2024. [(accessed on 11 September 2023)]. Available online: https://www.saatbau.com/sk/wp-content/uploads/sites/9/2023/11/saatbau-osiva-2024-jar-26-web.pdf.

Tobiašová E., Šimanský V. Kvantifikácia Pôdnych Vlastností a ich Vzájomných vzťahov Ovplyvnených Antropickou Činnosťou. 1st ed. Slovenská Poľnohospodárska Univerzita; Nitra, Slovakia: 2009.

Harčár J., Priechodská Z., Karolus K., Karolusová E., Remšík K., Šucha P. Vysvetlivky ku Geologickej Mape Severovýchodnej Časti Podunajskej Nižiny. 1st ed. Geologický Ústav Dionýza Štúra; Bratislava, Slovakia: 1988.

Šimanský V., Kováčik P. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem. 2015;20:1033–1040. doi: 10.5601/jelem.2015.20.1.857. DOI

Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., et al. The Uniform Methods of Soil Analysis. VÚPOP; Bratislava, Slovakia: 2011. p. 136.

Kononova M., Bělčikova N. Uskorennyje metody opredelenija sostava gumusa mineralnych počv. Počvovedenie. 1961;10:75–87.

Duflo E., Banerjee A. Handbook of Field Experiments. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017.

MPSR Vyhláška MP SR č. 338/2005 Z.z. [(accessed on 18 September 2009)]. Available online: https://www.mpsr.sk/vyhlaska-mp-sr-c-338-2005-z-z/29-23-29-1845/

Vicianová M., Ducsay L., Hric P. Effect of increasing doses of nitrogen on nutrient uptake by oilseed rape (Brassica napus L.) in years with different weather conditions. Bulg. J. Agric. Sci. 2024;30:250–254.

Losak T., Hlusek J., Martinec J., Jandak J., Szostkova M., Filipcik R., Manasek J., Prokes K., Peterka J., Varga L., et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.) Acta Agric. Scand. B Soil Plant. Sci. 2011;61:543–550.

Cade-Menun B.J., Elkin K.R., Liu C.W., Bryant R.B., Kleinman P.J.A., Moore P.A. Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochem. Trans. 2018;19:7. doi: 10.1186/s12932-018-0052-9. PubMed DOI PMC

TIBCO Software Inc. (Data Analysis Software System), Version 14.0. [(accessed on 6 June 2024)]. Available online: https://www.tibco.com/

White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI

Liu X., Wang F., Shi Z., Tong R., Shi X. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J. Nanopart. Res. 2015;17:175. doi: 10.1007/s11051-015-2989-2. DOI

White P.J., Broadley M.R., Gregory P.J. Managing the nutrition of plants and people. Appl. Environ. Soil Sci. 2012;2012:104826. doi: 10.1155/2012/104826. DOI

Ponge J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013;57:1048–1060. doi: 10.1016/j.soilbio.2012.07.019. DOI

Ciampitti I.A., Camberato J.J., Murrell S.T., Vyn T.J. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron. J. 2013;105:783–795. doi: 10.2134/agronj2012.0467. DOI

White P.J. Ion uptake mechanisms of individual cells and roots: Short-distance transport. In: Marschner P., editor. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; San Diego, CA, USA: 2012. pp. 7–47.

Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Møller I.S., White P. Functions of macronutrients. In: Marschner P., editor. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; San Diego, CA, USA: 2012. pp. 135–189.

Falade J.A. Interrelationships between potassium, calcium, and magnesium nutrition of Zea mays L. Ann. Bot. 1973;37:345–353. doi: 10.1093/oxfordjournals.aob.a084697. DOI

Kirkby E.A. Introduction, definition, and classification of nutrients. In: Rengel Z., Cakmak I., White P.J., editors. Marschner’s Mineral Nutrition of Plants. 4th ed. Academic Press; San Diego, CA, USA: 2023. pp. 3–9.

Reitemeier R.F. Soil Potassium. In: Norman A.G., editor. Advances in Agronomy. Academic Press; San Diego, CA, USA: 1951. pp. 113–164.

Zhu J., Li M., Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018;612:522–537. doi: 10.1016/j.scitotenv.2017.08.095. PubMed DOI

Sutar R.K., Pujar A.M., Kumar B.A., Hebsur N. Sulphur nutrition in maize—A critical review. Int. J. Pure. App. Biosci. 2017;5:1582–1596. doi: 10.18782/2320-7051.6092. DOI

Fixen P.E., Bruulsema T.W., Jensen T.L., Mikkelsen R., Murrell T.S., Phillips S.B., Rund Q., Stewart W.M. The fertility of North American soils, 2010. Better Crops Plant Food. 2010;94:6–8.

Warnock R.E. Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency. Soil Sci. Soc. Am. J. 1970;34:765–769. doi: 10.2136/sssaj1970.03615995003400050028x. DOI

Srivastav A., Ganjewala D., Singhal R.K., Rajput V.D., Minkina T., Voloshina M., Srivastava S., Shrivastava M. Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants. 2021;10:2556. doi: 10.3390/plants10122556. PubMed DOI PMC

Umar W., Hameed M.K., Aziz T., Maqsood M.A., Bilal H.M., Rasheed N. Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch. Agron. Soil Sci. 2021;67:1164–1176. doi: 10.1080/03650340.2020.1782893. DOI

Ernst D., Kolenčík M., Šebesta M., Ďurišová Ľ., Kšiňan S., Tomovičová L., Kotlárová N., Kalúzová M., Černý I., Kratošová G., et al. Significance of phosphate nano-fertilizers foliar application: A brief real-field study of quantitative, physiological parameters, and agro-ecological diversity in sunflower. Agronomy. 2023;13:2606. doi: 10.3390/agronomy13102606. DOI

Kraemer S.M., Crowley D.E., Kretzschmar R. Advances in Agronomy. Academic Press; San Diego, CA, USA: 2006. Geochemical Aspects of Phytosiderophore-Promoted Iron Acquisition by Plants; pp. 1–46.

Ehsanullah, Tariq A., Randhawa M.A., Anjum S.A., Nadeem M.A., Naeem M. Exploring the role of zinc in maize (Zea mays L.) through soil and foliar application. Univers. J. Agric. Res. 2015;3:69–75. doi: 10.13189/ujar.2015.030301. DOI

Rangaraj S., Gopalu K., Rathinam Y., Periasamy P., Venkatachalam R., Narayanasamy K. Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnol. Appl. Biochem. 2014;61:668–675. doi: 10.1002/bab.1191. PubMed DOI

Suriyaprabha R., Karunakaran G., Yuvakkumar R., Rajendran V., Kannan N. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Syn. React. Inorg. Metalorg. Nanometal. Chem. 2014;44:1128–1131. doi: 10.1080/15533174.2013.799197. DOI

Dumon J.C., Ernst W.H.O. Titanium in plants. J. Plant Physiol. 1988;133:203–209. doi: 10.1016/S0176-1617(88)80138-X. DOI

Hussain S., Shafiq I., Chattha M.S., Mumtaz M., Brestic M., Rastogi A., Chen G., Allakhverdiev S.I., Liu W., Yang W. Effect of Ti treatments on growth, photosynthesis, phosphorus uptake and yield of soybean (Glycine max L.) in maize-soybean relay strip intercropping. Environ. Exp. Bot. 2021;187:104476. doi: 10.1016/j.envexpbot.2021.104476. DOI

Ji Y., Seetharaman K., White P.J. Optimizing a small-scale corn-starch extraction method for use in the laboratory. Cereal Chem. 2004;81:55–58. doi: 10.1094/CCHEM.2004.81.1.55. DOI

Huang S., Sun G., Jin J., Zuo Y.-B., He P. Effect of nitrogen, phosphorus and potassium application on grain yield and qualities of high-oil and high-starch corn. Plant Nutr. Fert. Sci. 2004;10:225.

Chaudhary D.P., Kumar S., Yadav O.P. Nutritive value of maize: Improvements, applications and constraints. In: Chaudhary D.P., Kumar S., Langyan S., editors. Maize: Nutrition Dynamics and Novel Uses. Springer; New Delhi, India: 2014. pp. 3–17.

Zhang X., Guo D., Blennow A., Zörb C. Mineral nutrients and crop starch quality. Trends Food Sci. Technol. 2021;114:148–157. doi: 10.1016/j.tifs.2021.05.016. DOI

National Institute of Health—Iron: Fact Sheet for Health Professionals. [(accessed on 15 June 2023)]; Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/

Imran M., Rehim A., Sarwar N., Hussain S. Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. J. Plant Nutr. Soil Sci. 2016;179:60–66. doi: 10.1002/jpln.201500441. DOI

Li Y., Schluesener H.J., Xu S. Gold nanoparticle-based biosensors. Gold Bull. 2010;43:29–41. doi: 10.1007/BF03214964. DOI

Enea M., Pereira E., Silva D.D., Costa J., Soares M.E., de Lourdes Bastos M., Carmo H. Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches. Nanotechnology. 2020;31:195102. doi: 10.1088/1361-6528/ab6dfb. PubMed DOI

Committee on Toxicity: Safe Upper Levels for Vitamins and Minerals, Expert Group on Vitamins and Minerals. [(accessed on 1 May 2003)]; Available online: https://cot.food.gov.uk/sites/default/files/vitmin2003.pdf.

Shahhoseini R., Daneshvar H. Phytochemical and physiological reactions of feverfew (Tanacetum parthenium (L.) Schultz Bip) to TiO2 nanoparticles. Plant Physiol. Biochem. 2023;194:674–684. doi: 10.1016/j.plaphy.2022.12.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...